allenhzy commited on
Commit
773645f
1 Parent(s): 60eb8c9
Files changed (1) hide show
  1. index.html +8 -8
index.html CHANGED
@@ -39,7 +39,7 @@
39
  e.preventDefault();
40
  if (!$(this).hasClass('selected')) {
41
 
42
- $('.formula').hide(200);
43
  $('.formula-list > a').removeClass('selected');
44
  $(this).addClass('selected');
45
  var target = $(this).attr('href');
@@ -420,8 +420,8 @@
420
  <div class="column container formula">
421
  <p>
422
  Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
423
- and the detection strategy. For an SSL model with a feature extractor <equation-inline>f</equation-inline>, a projector $h$, and a classification head $g$,
424
- the classification branch can be formulated as <equation-inline>\mathbb{C} = f\circ g</equation-inline> and the representation branch as $\mathbb{R} = f\circ h$.
425
  To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
426
  </div>
427
  </div>
@@ -435,7 +435,7 @@
435
  <a href=".total-loss">Total Loss</a>
436
  <div style="clear: both"></div>
437
  </div>
438
- <div id="adaptive-loss-formula-content" class="row align-items-center">
439
  <span class="formula label-loss" style="">
440
  $$
441
  \displaystyle
@@ -457,16 +457,16 @@
457
  </div>
458
 
459
  <div class="columns is-centered">
460
- <div class="column container">
461
  <p class="formula label-loss">
462
- where $\displaystyle k$ represents the number of generated neighbors, $\displaystyle y_t$ is the target class, and $\displaystyle \mathcal{L}$ is the cross entropy loss function
463
  </p>
464
  <p class="formula representation-loss" style="display: none">
465
- where $\displaystyle \mathcal{S}$ is the cosine similarity.
466
  </p>
467
 
468
  <p class="formula total-loss" style="display: none;">
469
- where $\displaystyle \mathcal{L}_C$ indicates classifier's loss function, $\displaystyle y_t$ is the targeted class, and $\displaystyle \alpha$ refers to a hyperparameter.
470
  </p>
471
  </div>
472
  </div>
 
39
  e.preventDefault();
40
  if (!$(this).hasClass('selected')) {
41
 
42
+ $('.adaptive-loss-formula-content > .formula').hide(200);
43
  $('.formula-list > a').removeClass('selected');
44
  $(this).addClass('selected');
45
  var target = $(this).attr('href');
 
420
  <div class="column container formula">
421
  <p>
422
  Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
423
+ and the detection strategy. For an SSL model with a feature extractor $$f$$, a projector $h$, and a classification head $g$,
424
+ the classification branch can be formulated as $$\mathbb{C} = f\circ g$$ and the representation branch as $$\mathbb{R} = f\circ h$$.
425
  To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
426
  </div>
427
  </div>
 
435
  <a href=".total-loss">Total Loss</a>
436
  <div style="clear: both"></div>
437
  </div>
438
+ <div class="row align-items-center adaptive-loss-formula-content>
439
  <span class="formula label-loss" style="">
440
  $$
441
  \displaystyle
 
457
  </div>
458
 
459
  <div class="columns is-centered">
460
+ <div class="column container adaptive-loss-formula-content">
461
  <p class="formula label-loss">
462
+ where $$k$$ represents the number of generated neighbors, $$y_t$$ is the target class, and $$\mathcal{L}$$ is the cross entropy loss function.
463
  </p>
464
  <p class="formula representation-loss" style="display: none">
465
+ where $$\mathcal{S}$$ is the cosine similarity.
466
  </p>
467
 
468
  <p class="formula total-loss" style="display: none;">
469
+ where $$\mathcal{L}_C$$ indicates classifier's loss function, $y_t$ is the targeted class, and $\alpha$ refers to a hyperparameter.
470
  </p>
471
  </div>
472
  </div>