equation
Browse files- index.html +8 -8
index.html
CHANGED
@@ -39,7 +39,7 @@
|
|
39 |
e.preventDefault();
|
40 |
if (!$(this).hasClass('selected')) {
|
41 |
|
42 |
-
$('.formula').hide(200);
|
43 |
$('.formula-list > a').removeClass('selected');
|
44 |
$(this).addClass('selected');
|
45 |
var target = $(this).attr('href');
|
@@ -420,8 +420,8 @@
|
|
420 |
<div class="column container formula">
|
421 |
<p>
|
422 |
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
|
423 |
-
and the detection strategy. For an SSL model with a feature extractor
|
424 |
-
the classification branch can be formulated as
|
425 |
To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
|
426 |
</div>
|
427 |
</div>
|
@@ -435,7 +435,7 @@
|
|
435 |
<a href=".total-loss">Total Loss</a>
|
436 |
<div style="clear: both"></div>
|
437 |
</div>
|
438 |
-
<div
|
439 |
<span class="formula label-loss" style="">
|
440 |
$$
|
441 |
\displaystyle
|
@@ -457,16 +457,16 @@
|
|
457 |
</div>
|
458 |
|
459 |
<div class="columns is-centered">
|
460 |
-
<div class="column container">
|
461 |
<p class="formula label-loss">
|
462 |
-
where
|
463 |
</p>
|
464 |
<p class="formula representation-loss" style="display: none">
|
465 |
-
where
|
466 |
</p>
|
467 |
|
468 |
<p class="formula total-loss" style="display: none;">
|
469 |
-
where
|
470 |
</p>
|
471 |
</div>
|
472 |
</div>
|
|
|
39 |
e.preventDefault();
|
40 |
if (!$(this).hasClass('selected')) {
|
41 |
|
42 |
+
$('.adaptive-loss-formula-content > .formula').hide(200);
|
43 |
$('.formula-list > a').removeClass('selected');
|
44 |
$(this).addClass('selected');
|
45 |
var target = $(this).attr('href');
|
|
|
420 |
<div class="column container formula">
|
421 |
<p>
|
422 |
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
|
423 |
+
and the detection strategy. For an SSL model with a feature extractor $$f$$, a projector $h$, and a classification head $g$,
|
424 |
+
the classification branch can be formulated as $$\mathbb{C} = f\circ g$$ and the representation branch as $$\mathbb{R} = f\circ h$$.
|
425 |
To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
|
426 |
</div>
|
427 |
</div>
|
|
|
435 |
<a href=".total-loss">Total Loss</a>
|
436 |
<div style="clear: both"></div>
|
437 |
</div>
|
438 |
+
<div class="row align-items-center adaptive-loss-formula-content>
|
439 |
<span class="formula label-loss" style="">
|
440 |
$$
|
441 |
\displaystyle
|
|
|
457 |
</div>
|
458 |
|
459 |
<div class="columns is-centered">
|
460 |
+
<div class="column container adaptive-loss-formula-content">
|
461 |
<p class="formula label-loss">
|
462 |
+
where $$k$$ represents the number of generated neighbors, $$y_t$$ is the target class, and $$\mathcal{L}$$ is the cross entropy loss function.
|
463 |
</p>
|
464 |
<p class="formula representation-loss" style="display: none">
|
465 |
+
where $$\mathcal{S}$$ is the cosine similarity.
|
466 |
</p>
|
467 |
|
468 |
<p class="formula total-loss" style="display: none;">
|
469 |
+
where $$\mathcal{L}_C$$ indicates classifier's loss function, $y_t$ is the targeted class, and $\alpha$ refers to a hyperparameter.
|
470 |
</p>
|
471 |
</div>
|
472 |
</div>
|