equation
Browse files- index.html +5 -5
index.html
CHANGED
@@ -420,8 +420,8 @@
|
|
420 |
<div class="column container formula">
|
421 |
<p>
|
422 |
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
|
423 |
-
and the detection strategy. For an SSL model with a feature extractor
|
424 |
-
the classification branch can be formulated as
|
425 |
To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
|
426 |
</div>
|
427 |
</div>
|
@@ -459,14 +459,14 @@
|
|
459 |
<div class="columns is-centered">
|
460 |
<div class="column container adaptive-loss-formula-content">
|
461 |
<p class="formula label-loss formula-content">
|
462 |
-
where
|
463 |
</p>
|
464 |
<p class="formula representation-loss formula-content" style="display: none">
|
465 |
-
where
|
466 |
</p>
|
467 |
|
468 |
<p class="formula total-loss formula-content" style="display: none;">
|
469 |
-
where
|
470 |
</p>
|
471 |
</div>
|
472 |
</div>
|
|
|
420 |
<div class="column container formula">
|
421 |
<p>
|
422 |
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
|
423 |
+
and the detection strategy. For an SSL model with a feature extractor <i>f</i>, a projector <i>h</i>, and a classification head <i>g</i>,
|
424 |
+
the classification branch can be formulated as <strong>C</strong>= <i>f</i> ° <i>g</i> and the representation branch as <strong>R</strong> = <i>f</i> ° <i>h</i>.
|
425 |
To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
|
426 |
</div>
|
427 |
</div>
|
|
|
459 |
<div class="columns is-centered">
|
460 |
<div class="column container adaptive-loss-formula-content">
|
461 |
<p class="formula label-loss formula-content">
|
462 |
+
where k represents the number of generated neighbors, <i>y</i><sub><i>t</i></sub> is the target class, and <strong><i>L</i></strong> is the cross entropy loss function.
|
463 |
</p>
|
464 |
<p class="formula representation-loss formula-content" style="display: none">
|
465 |
+
where k represents the number of generated neighbors, and <strong><i>S</i></strong> is the cosine similarity.
|
466 |
</p>
|
467 |
|
468 |
<p class="formula total-loss formula-content" style="display: none;">
|
469 |
+
where <strong><i>L</i></strong><sub>C</sub> indicates classifier's loss function, <i>y</i><sub><i>t</i></sub> is the targeted class, and &alpha refers to a hyperparameter.
|
470 |
</p>
|
471 |
</div>
|
472 |
</div>
|