allenhzy commited on
Commit
eca759a
1 Parent(s): 710289e
Files changed (1) hide show
  1. index.html +9 -9
index.html CHANGED
@@ -437,25 +437,25 @@
437
  <div class="column container-centered">
438
  <div id="adaptive-loss-formula" class="container">
439
  <div id="adaptive-loss-formula-list" class="row align-items-center formula-list">
440
- <a href="#label-loss" class="selected">Label Consistency Loss</a>
441
- <a href="#representation-loss">Representation Similarity Loss</a>
442
- <a href="#total-loss">Total Loss</a>
443
  <div style="clear: both"></div>
444
  </div>
445
  <div id="adaptive-loss-formula-content" class="row align-items-center">
446
- <span id="label-loss" class="formula" style="">
447
  $$
448
  \displaystyle
449
  Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right)
450
  $$
451
  </span>
452
- <span id="representation-loss" class="formula" style="display: none;">
453
  $$
454
  \displaystyle
455
  Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta))
456
  $$
457
  </span>
458
- <span id="total-loss" class="formula" style="display: none;">
459
  $$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$
460
  </span>
461
  </div>
@@ -464,19 +464,19 @@
464
 
465
  <div class="columns is-centered">
466
  <div class="column">
467
- <p id="label-loss" class="eq-des">
468
  Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
469
  and the detection strategy. For an SSL model with a feature extractor $f$, a projector $h$, and a classification head $g$,
470
  the classification branch can be formulated as $\mathbb{C} = f\circ g$ and the representation branch as $\mathbb{R} = f\circ h$.
471
  To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
472
  </p>
473
- <p id="representation-loss" class="eq-des" style="display: none">
474
  where $\mathcal{S}$ represents cosine similarity, $k$ represents the number of generated neighbors,
475
  and the linear augmentation function $W(x)=W(x,p);~p\sim P$ randomly samples $p$ from the parameter distribution $P$ to generate different neighbors.
476
  Note that we guarantee the generated neighbors are fixed each time by fixing the random seed. The adaptive adversaries perform attacks on the following objective function:
477
  </p>
478
 
479
- <p id="total-loss" class="eq-des" style="display: none;">
480
  where $\mathcal{L}_C$ indicates classifier's loss function, $y_t$ is the targeted class, and $\alpha$ refers to a hyperparameter.
481
  </p>
482
  </div>
 
437
  <div class="column container-centered">
438
  <div id="adaptive-loss-formula" class="container">
439
  <div id="adaptive-loss-formula-list" class="row align-items-center formula-list">
440
+ <a href=".label-loss" class="selected">Label Consistency Loss</a>
441
+ <a href=".representation-loss">Representation Similarity Loss</a>
442
+ <a href=".total-loss">Total Loss</a>
443
  <div style="clear: both"></div>
444
  </div>
445
  <div id="adaptive-loss-formula-content" class="row align-items-center">
446
+ <span class="formula label-loss" style="">
447
  $$
448
  \displaystyle
449
  Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right)
450
  $$
451
  </span>
452
+ <span class="formula representation-loss" style="display: none;">
453
  $$
454
  \displaystyle
455
  Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta))
456
  $$
457
  </span>
458
+ <span class="formula total-loss" style="display: none;">
459
  $$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$
460
  </span>
461
  </div>
 
464
 
465
  <div class="columns is-centered">
466
  <div class="column">
467
+ <p class="eq-des label-loss">
468
  Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
469
  and the detection strategy. For an SSL model with a feature extractor $f$, a projector $h$, and a classification head $g$,
470
  the classification branch can be formulated as $\mathbb{C} = f\circ g$ and the representation branch as $\mathbb{R} = f\circ h$.
471
  To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
472
  </p>
473
+ <p class="eq-des representation-loss" style="display: none">
474
  where $\mathcal{S}$ represents cosine similarity, $k$ represents the number of generated neighbors,
475
  and the linear augmentation function $W(x)=W(x,p);~p\sim P$ randomly samples $p$ from the parameter distribution $P$ to generate different neighbors.
476
  Note that we guarantee the generated neighbors are fixed each time by fixing the random seed. The adaptive adversaries perform attacks on the following objective function:
477
  </p>
478
 
479
+ <p class="eq-des total-loss" style="display: none;">
480
  where $\mathcal{L}_C$ indicates classifier's loss function, $y_t$ is the targeted class, and $\alpha$ refers to a hyperparameter.
481
  </p>
482
  </div>