Spaces:
Running
Running
switch name from ner to gliner
Browse files
app.py
CHANGED
@@ -59,14 +59,14 @@ def ner(
|
|
59 |
}
|
60 |
|
61 |
|
62 |
-
with gr.Blocks(title="CamemBERT-bio-
|
63 |
gr.Markdown(
|
64 |
"""
|
65 |
<img src="https://camembert-bio-model.fr/authors/camembert-bio/camembert-bio-ner-logo.png" alt="drawing" width="250"/>
|
66 |
|
67 |
-
# CamemBERT-bio-
|
68 |
|
69 |
-
CamemBERT-bio-
|
70 |
|
71 |
[CamemBERT-bio](https://huggingface.co/almanach/camembert-bio-base) is used as a backbone.
|
72 |
|
@@ -74,7 +74,7 @@ with gr.Blocks(title="CamemBERT-bio-ner") as demo:
|
|
74 |
|
75 |
## Links
|
76 |
|
77 |
-
* Model: https://huggingface.co/almanach/camembert-bio-
|
78 |
* Backbone model: https://huggingface.co/almanach/camembert-bio-base
|
79 |
* GLiNER library: https://github.com/urchade/GLiNER
|
80 |
* Developed by: [Rian Touchent](https://rian-t.github.io), [Eric Villemonte de La Clergerie](http://pauillac.inria.fr/~clerger/)
|
@@ -99,7 +99,7 @@ with gr.Blocks(title="CamemBERT-bio-ner") as demo:
|
|
99 |
'''
|
100 |
from gliner import GLiNER
|
101 |
|
102 |
-
model = GLiNER.from_pretrained("almanach/camembert-bio-
|
103 |
|
104 |
text = """
|
105 |
Mme A.P. âgée de 52 ans, non tabagique, ayant un diabète de type 2 a été hospitalisée pour une pneumopathie infectieuse. Cette patiente présentait depuis 2 ans des infections respiratoires traités en ambulatoire. L’examen physique a trouvé une fièvre à 38ºc et un foyer de râles crépitants de la base pulmonaire droite.
|
|
|
59 |
}
|
60 |
|
61 |
|
62 |
+
with gr.Blocks(title="CamemBERT-bio-gliner") as demo:
|
63 |
gr.Markdown(
|
64 |
"""
|
65 |
<img src="https://camembert-bio-model.fr/authors/camembert-bio/camembert-bio-ner-logo.png" alt="drawing" width="250"/>
|
66 |
|
67 |
+
# CamemBERT-bio-gliner : Zero-shot French Biomedical Named Entity Recognition
|
68 |
|
69 |
+
CamemBERT-bio-gliner is a Named Entity Recognition (NER) model capable of identifying any french biomedical entity type using a BERT-like encoder. It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
|
70 |
|
71 |
[CamemBERT-bio](https://huggingface.co/almanach/camembert-bio-base) is used as a backbone.
|
72 |
|
|
|
74 |
|
75 |
## Links
|
76 |
|
77 |
+
* Model: https://huggingface.co/almanach/camembert-bio-gliner
|
78 |
* Backbone model: https://huggingface.co/almanach/camembert-bio-base
|
79 |
* GLiNER library: https://github.com/urchade/GLiNER
|
80 |
* Developed by: [Rian Touchent](https://rian-t.github.io), [Eric Villemonte de La Clergerie](http://pauillac.inria.fr/~clerger/)
|
|
|
99 |
'''
|
100 |
from gliner import GLiNER
|
101 |
|
102 |
+
model = GLiNER.from_pretrained("almanach/camembert-bio-gliner")
|
103 |
|
104 |
text = """
|
105 |
Mme A.P. âgée de 52 ans, non tabagique, ayant un diabète de type 2 a été hospitalisée pour une pneumopathie infectieuse. Cette patiente présentait depuis 2 ans des infections respiratoires traités en ambulatoire. L’examen physique a trouvé une fièvre à 38ºc et un foyer de râles crépitants de la base pulmonaire droite.
|