myalexa / app.py
almncarlo's picture
Update app.py
7d4aec1 verified
raw
history blame
7.48 kB
# import gradio as gr
# import torch
# from transformers import pipeline, AutoTokenizer
# from nemo.collections.asr.models import EncDecMultiTaskModel
# # load model
# canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')
# # update dcode params
# decode_cfg = canary_model.cfg.decoding
# decode_cfg.beam.beam_size = 1
# canary_model.change_decoding_strategy(decode_cfg)
# pipe = pipeline(
# "automatic-speech-recognition",
# model="nvidia/canary-1b"
# )
# # pipe = pipeline(
# # "text-generation",
# # model="QuantFactory/Meta-Llama-3-8B-Instruct-GGUF",
# # model_kwargs={"torch_dtype": torch.bfloat16},
# # device_map="auto"
# # )
# gr.Interface.from_pipeline(pipe,
# title="ASR",
# description="Using pipeline with Canary-1B",
# ).launch(inbrowser=True)
import gradio as gr
import json
import librosa
import os
import soundfile as sf
import tempfile
import uuid
import torch
from nemo.collections.asr.models import ASRModel
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchMultiTaskAED
from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_multitaskAED
SAMPLE_RATE = 16000 # Hz
MAX_AUDIO_MINUTES = 180 # wont try to transcribe if longer than this
model = ASRModel.from_pretrained("nvidia/canary-1b")
model.eval()
# make sure beam size always 1 for consistency
model.change_decoding_strategy(None)
decoding_cfg = model.cfg.decoding
decoding_cfg.beam.beam_size = 1
model.change_decoding_strategy(decoding_cfg)
# setup for buffered inference
model.cfg.preprocessor.dither = 0.0
model.cfg.preprocessor.pad_to = 0
feature_stride = model.cfg.preprocessor['window_stride']
model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer
frame_asr = FrameBatchMultiTaskAED(
asr_model=model,
frame_len=40.0,
total_buffer=40.0,
batch_size=16,
)
amp_dtype = torch.float16
def convert_audio(audio_filepath, tmpdir, utt_id):
"""
Convert all files to monochannel 16 kHz wav files.
Do not convert and raise error if audio too long.
Returns output filename and duration.
"""
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
duration = librosa.get_duration(y=data, sr=sr)
if duration / 60.0 > MAX_AUDIO_MINUTES:
raise gr.Error(
f"This demo can transcribe up to {MAX_AUDIO_MINUTES} minutes of audio. "
"If you wish, you may trim the audio using the Audio viewer in Step 1 "
"(click on the scissors icon to start trimming audio)."
)
if sr != SAMPLE_RATE:
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
out_filename = os.path.join(tmpdir, utt_id + '.wav')
# save output audio
sf.write(out_filename, data, SAMPLE_RATE)
return out_filename, duration
def transcribe(audio_filepath, src_lang, tgt_lang, pnc):
if audio_filepath is None:
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
utt_id = uuid.uuid4()
with tempfile.TemporaryDirectory() as tmpdir:
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
# map src_lang and tgt_lang from long versions to short
LANG_LONG_TO_LANG_SHORT = {
"English": "en",
"Spanish": "es",
"French": "fr",
"German": "de",
}
if src_lang not in LANG_LONG_TO_LANG_SHORT.keys():
raise ValueError(f"src_lang must be one of {LANG_LONG_TO_LANG_SHORT.keys()}")
else:
src_lang = LANG_LONG_TO_LANG_SHORT[src_lang]
if tgt_lang not in LANG_LONG_TO_LANG_SHORT.keys():
raise ValueError(f"tgt_lang must be one of {LANG_LONG_TO_LANG_SHORT.keys()}")
else:
tgt_lang = LANG_LONG_TO_LANG_SHORT[tgt_lang]
# infer taskname from src_lang and tgt_lang
if src_lang == tgt_lang:
taskname = "asr"
else:
taskname = "s2t_translation"
# update pnc variable to be "yes" or "no"
pnc = "yes" if pnc else "no"
# make manifest file and save
manifest_data = {
"audio_filepath": converted_audio_filepath,
"source_lang": src_lang,
"target_lang": tgt_lang,
"taskname": taskname,
"pnc": pnc,
"answer": "predict",
"duration": str(duration),
}
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
with open(manifest_filepath, 'w') as fout:
line = json.dumps(manifest_data)
fout.write(line + '\n')
# call transcribe, passing in manifest filepath
if duration < 40:
output_text = model.transcribe(manifest_filepath)[0]
else: # do buffered inference
with torch.cuda.amp.autocast(dtype=amp_dtype): # TODO: make it work if no cuda
with torch.no_grad():
hyps = get_buffered_pred_feat_multitaskAED(
frame_asr,
model.cfg.preprocessor,
model_stride_in_secs,
model.device,
manifest=manifest_filepath,
filepaths=None,
)
output_text = hyps[0].text
return output_text
with gr.Blocks(
title="NeMo Canary Model",
css="""
textarea { font-size: 18px;}
#model_output_text_box span {
font-size: 18px;
font-weight: bold;
}
""",
theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
) as demo:
gr.HTML("<h1 style='text-align: center'>NeMo Canary model: Transcribe & Translate audio</h1>")
with gr.Row():
with gr.Column():
gr.HTML(
"<p><b>Step 1:</b> Upload an audio file or record with your microphone.</p>"
"<p style='color: #A0A0A0;'>This demo supports audio files up to 10 mins long. "
"You can transcribe longer files locally with this NeMo "
"<a href='https://github.com/NVIDIA/NeMo/blob/main/examples/asr/speech_multitask/speech_to_text_aed_chunked_infer.py'>script</a>.</p>"
)
audio_file = gr.Audio(sources=["microphone", "upload"], type="filepath")
gr.HTML("<p><b>Step 2:</b> Choose the input and output language.</p>")
src_lang = gr.Dropdown(
choices=["English", "Spanish", "French", "German"],
value="English",
label="Input audio is spoken in:"
)
with gr.Column():
tgt_lang = gr.Dropdown(
choices=["English", "Spanish", "French", "German"],
value="English",
label="Transcribe in language:"
)
pnc = gr.Checkbox(
value=True,
label="Punctuation & Capitalization in transcript?",
)
with gr.Column():
gr.HTML("<p><b>Step 3:</b> Run the model.</p>")
go_button = gr.Button(
value="Run model",
variant="primary", # make "primary" so it stands out (default is "secondary")
)
model_output_text_box = gr.Textbox(
label="Model Output",
elem_id="model_output_text_box",
)
with gr.Row():
gr.HTML(
"<p style='text-align: center'>"
"🐀 <a href='https://huggingface.co/nvidia/canary-1b' target='_blank'>Canary model</a> | "
"πŸ§‘β€πŸ’» <a href='https://github.com/NVIDIA/NeMo' target='_blank'>NeMo Repository</a>"
"</p>"
)
go_button.click(
fn=transcribe,
inputs = [audio_file, src_lang, tgt_lang, pnc],
outputs = [model_output_text_box]
)
# call on_src_or_tgt_lang_change whenever src_lang or tgt_lang dropdown menus are changed
src_lang.change(
fn=on_src_or_tgt_lang_change,
inputs=[src_lang, tgt_lang, pnc],
outputs=[src_lang, tgt_lang, pnc],
)
tgt_lang.change(
fn=on_src_or_tgt_lang_change,
inputs=[src_lang, tgt_lang, pnc],
outputs=[src_lang, tgt_lang, pnc],
)
demo.queue()
demo.launch(share=True)