Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import joblib
|
4 |
+
|
5 |
+
# Page config
|
6 |
+
st.set_page_config(page_title="Blueberry Yield Predictor", layout="wide")
|
7 |
+
|
8 |
+
# Load model and scaler
|
9 |
+
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
+
model = joblib.load('model.joblib')
|
12 |
+
scaler = joblib.load('scaler.joblib')
|
13 |
+
return model, scaler
|
14 |
+
|
15 |
+
model, scaler = load_model()
|
16 |
+
|
17 |
+
# App title
|
18 |
+
st.title('🫐 Blueberry Yield Predictor')
|
19 |
+
st.markdown('Enter field parameters to predict blueberry yield')
|
20 |
+
|
21 |
+
# Create two columns for inputs
|
22 |
+
col1, col2 = st.columns(2)
|
23 |
+
|
24 |
+
with col1:
|
25 |
+
st.subheader('Field Parameters')
|
26 |
+
clonesize = st.slider('Clone Size', 10.0, 40.0, 25.0)
|
27 |
+
honeybee = st.slider('Honeybee', 0.0, 1.0, 0.5)
|
28 |
+
bumbles = st.slider('Bumbles', 0.0, 1.0, 0.25)
|
29 |
+
andrena = st.slider('Andrena', 0.0, 1.0, 0.5)
|
30 |
+
|
31 |
+
with col2:
|
32 |
+
st.subheader('Environmental Parameters')
|
33 |
+
osmia = st.slider('Osmia', 0.0, 1.0, 0.5)
|
34 |
+
MaxOfUpperTRange = st.slider('Max Temperature (°F)', 60.0, 100.0, 80.0)
|
35 |
+
MinOfUpperTRange = st.slider('Min Temperature (°F)', 35.0, 60.0, 50.0)
|
36 |
+
RainingDays = st.slider('Raining Days', 1.0, 34.0, 20.0)
|
37 |
+
|
38 |
+
# Predict button
|
39 |
+
if st.button('Predict Yield'):
|
40 |
+
# Create input data
|
41 |
+
input_data = pd.DataFrame({
|
42 |
+
'clonesize': [clonesize],
|
43 |
+
'honeybee': [honeybee],
|
44 |
+
'bumbles': [bumbles],
|
45 |
+
'andrena': [andrena],
|
46 |
+
'osmia': [osmia],
|
47 |
+
'MaxOfUpperTRange': [MaxOfUpperTRange],
|
48 |
+
'MinOfUpperTRange': [MinOfUpperTRange],
|
49 |
+
'AverageOfUpperTRange': [(MaxOfUpperTRange + MinOfUpperTRange) / 2],
|
50 |
+
'MaxOfLowerTRange': [60.0],
|
51 |
+
'MinOfLowerTRange': [30.0],
|
52 |
+
'AverageOfLowerTRange': [45.0],
|
53 |
+
'RainingDays': [RainingDays],
|
54 |
+
'AverageRainingDays': [RainingDays/100],
|
55 |
+
'fruitset': [0.5],
|
56 |
+
'fruitmass': [0.45],
|
57 |
+
'seeds': [35.0]
|
58 |
+
})
|
59 |
+
|
60 |
+
# Scale and predict
|
61 |
+
input_scaled = scaler.transform(input_data)
|
62 |
+
prediction = model.predict(input_scaled)[0]
|
63 |
+
|
64 |
+
# Display prediction
|
65 |
+
st.success(f'Predicted Yield: {prediction:.2f}')
|