Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import joblib
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
|
6 |
+
# Download model and feature names from Hugging Face
|
7 |
+
model_path = hf_hub_download(repo_id="alperugurcan/mercedes", filename="mercedes_model.joblib")
|
8 |
+
feature_names_path = hf_hub_download(repo_id="alperugurcan/mercedes", filename="feature_names.joblib")
|
9 |
+
|
10 |
+
# Load the saved model and feature names
|
11 |
+
model = joblib.load(model_path)
|
12 |
+
feature_names = joblib.load(feature_names_path)
|
13 |
+
|
14 |
+
def predict(*features):
|
15 |
+
# Create a DataFrame with the input features
|
16 |
+
df = pd.DataFrame([features], columns=feature_names)
|
17 |
+
|
18 |
+
# Make prediction
|
19 |
+
prediction = model.predict(df)[0]
|
20 |
+
return f"Predicted time: {prediction:.2f}"
|
21 |
+
|
22 |
+
# Create the interface
|
23 |
+
inputs = [gr.Number(label=f"Feature {i+1}") for i in range(len(feature_names))]
|
24 |
+
output = gr.Textbox(label="Prediction")
|
25 |
+
|
26 |
+
interface = gr.Interface(
|
27 |
+
fn=predict,
|
28 |
+
inputs=inputs,
|
29 |
+
outputs=output,
|
30 |
+
title="Mercedes-Benz Manufacturing Time Prediction",
|
31 |
+
description="Enter feature values to predict manufacturing time"
|
32 |
+
)
|
33 |
+
|
34 |
+
interface.launch()
|