File size: 8,224 Bytes
33c3d7d
 
 
 
 
 
 
731c2c3
33c3d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483bdd9
33c3d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731c2c3
33c3d7d
 
 
 
 
 
 
 
 
 
731c2c3
33c3d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
#import torch
import yolov7
import subprocess
import tempfile
import time
from pathlib import Path
import uuid
import cv2
import gradio as gr



# Images
#torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
#torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
    
def image_fn(
    image: gr.inputs.Image = None,
    model_path: gr.inputs.Dropdown = None,
    image_size: gr.inputs.Slider = 640,
    conf_threshold: gr.inputs.Slider = 0.25,
    iou_threshold: gr.inputs.Slider = 0.45,
):
    """
    YOLOv7 inference function
    Args:
        image: Input image
        model_path: Path to the model
        image_size: Image size
        conf_threshold: Confidence threshold
        iou_threshold: IOU threshold
    Returns:
        Rendered image
    """

    model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
    model.conf = conf_threshold
    model.iou = iou_threshold
    results = model([image], size=image_size)
    return results.render()[0]
  
  
        
def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
    model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
    start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
    end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))

    suffix = Path(video_file).suffix

    clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
    subprocess.call(
        f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
    )

    # Reader of clip file
    cap = cv2.VideoCapture(clip_temp_file.name)

    # This is an intermediary temp file where we'll write the video to
    # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
    # with ffmpeg at the end of the function here.
    with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
        out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))

        num_frames = 0
        max_frames = duration * 30
        while cap.isOpened():
            try:
                ret, frame = cap.read()
                if not ret:
                    break
            except Exception as e:
                print(e)
                continue
            print("FRAME DTYPE", type(frame))
            out.write(model([frame], conf_thres, iou_thres))
            num_frames += 1
            print("Processed {} frames".format(num_frames))
            if num_frames == max_frames:
                break

        out.release()

        # Aforementioned hackiness
        out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
        subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())

    return out_file.name

image_interface = gr.Interface(
    fn=image_fn,
    inputs=[
    gr.inputs.Image(type="pil", label="Input Image"),
    gr.inputs.Dropdown(
        choices=[
            "alshimaa/model_baseline",
            "alshimaa/model_yolo7",
            #"kadirnar/yolov7-v0.1",
        ],
        default="alshimaa/model_baseline",
        label="Model",
    )
    #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
    #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
    #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
],
    outputs=gr.outputs.Image(type="filepath", label="Output Image"),
    title="Smart Environmental Eye (SEE)",
    examples=[['image1.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45]],
    cache_examples=True,
    theme='huggingface',
)


video_interface = gr.Interface(
    fn=video_fn,
    inputs=[
        gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"),
        gr.inputs.Dropdown(
        choices=[
            "alshimaa/model_baseline",
            "alshimaa/model_yolo7",
            #"kadirnar/yolov7-v0.1",
        ],
        default="alshimaa/model_baseline",
        label="Model",
    ),
    ],
    outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
    # examples=[
    #     ["video.mp4", 0.25, 0.45, 0, 2],
       
    # ],
    title="Smart Environmental Eye (SEE)",
    cache_examples=True,
    theme='huggingface',
   
)

if __name__ == "__main__":
    gr.TabbedInterface(
        [image_interface, video_interface],
        ["Run on Images", "Run on Videos"],
    ).launch()

# import subprocess
# import tempfile
# import time
# from pathlib import Path

# import cv2
# import gradio as gr

# from inferer import Inferer

# pipeline = Inferer("alshimaa/model_yolo7", device='cuda')


# def fn_image(image, conf_thres, iou_thres):
#     return pipeline(image, conf_thres, iou_thres)


# def fn_video(video_file, conf_thres, iou_thres, start_sec, duration):
#     start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
#     end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))

#     suffix = Path(video_file).suffix

#     clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
#     subprocess.call(
#         f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
#     )

#     # Reader of clip file
#     cap = cv2.VideoCapture(clip_temp_file.name)

#     # This is an intermediary temp file where we'll write the video to
#     # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
#     # with ffmpeg at the end of the function here.
#     with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
#         out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))

#         num_frames = 0
#         max_frames = duration * 30
#         while cap.isOpened():
#             try:
#                 ret, frame = cap.read()
#                 if not ret:
#                     break
#             except Exception as e:
#                 print(e)
#                 continue
#             print("FRAME DTYPE", type(frame))
#             out.write(pipeline(frame, conf_thres, iou_thres))
#             num_frames += 1
#             print("Processed {} frames".format(num_frames))
#             if num_frames == max_frames:
#                 break

#         out.release()

#         # Aforementioned hackiness
#         out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
#         subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())

#     return out_file.name


# image_interface = gr.Interface(
#     fn=fn_image,
#     inputs=[
#         "image",
#         gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
#         gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
#     ],
#     outputs=gr.Image(type="file"),
#     examples=[["image1.jpg", 0.5, 0.5], ["image2.jpg", 0.25, 0.45], ["image3.jpg", 0.25, 0.45]],
#     title="Smart Environmental Eye (SEE)",
#     allow_flagging=False,
#     allow_screenshot=False,
# )

# video_interface = gr.Interface(
#     fn=fn_video,
#     inputs=[
#         gr.Video(type="file"),
#         gr.Slider(0, 1, value=0.25, label="Confidence Threshold"),
#         gr.Slider(0, 1, value=0.45, label="IOU Threshold"),
#         gr.Slider(0, 10, value=0, label="Start Second", step=1),
#         gr.Slider(0, 10 if pipeline.device.type != 'cpu' else 3, value=4, label="Duration", step=1),
#     ],
#     outputs=gr.Video(type="file", format="mp4"),
#     # examples=[
#     #     ["video.mp4", 0.25, 0.45, 0, 2],
       
#     # ],
#     title="Smart Environmental Eye (SEE)",
#     allow_flagging=False,
#     allow_screenshot=False,
# )



# if __name__ == "__main__":
#     gr.TabbedInterface(
#         [image_interface, video_interface],
#         ["Run on Images", "Run on Videos"],
#     ).launch()