Spaces:
Sleeping
Sleeping
File size: 8,224 Bytes
33c3d7d 731c2c3 33c3d7d 483bdd9 33c3d7d 731c2c3 33c3d7d 731c2c3 33c3d7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
#import torch
import yolov7
import subprocess
import tempfile
import time
from pathlib import Path
import uuid
import cv2
import gradio as gr
# Images
#torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
#torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
def image_fn(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv7 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
model.conf = conf_threshold
model.iou = iou_threshold
results = model([image], size=image_size)
return results.render()[0]
def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
suffix = Path(video_file).suffix
clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
subprocess.call(
f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
)
# Reader of clip file
cap = cv2.VideoCapture(clip_temp_file.name)
# This is an intermediary temp file where we'll write the video to
# Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
# with ffmpeg at the end of the function here.
with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
num_frames = 0
max_frames = duration * 30
while cap.isOpened():
try:
ret, frame = cap.read()
if not ret:
break
except Exception as e:
print(e)
continue
print("FRAME DTYPE", type(frame))
out.write(model([frame], conf_thres, iou_thres))
num_frames += 1
print("Processed {} frames".format(num_frames))
if num_frames == max_frames:
break
out.release()
# Aforementioned hackiness
out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
return out_file.name
image_interface = gr.Interface(
fn=image_fn,
inputs=[
gr.inputs.Image(type="pil", label="Input Image"),
gr.inputs.Dropdown(
choices=[
"alshimaa/model_baseline",
"alshimaa/model_yolo7",
#"kadirnar/yolov7-v0.1",
],
default="alshimaa/model_baseline",
label="Model",
)
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
],
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
title="Smart Environmental Eye (SEE)",
examples=[['image1.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45]],
cache_examples=True,
theme='huggingface',
)
video_interface = gr.Interface(
fn=video_fn,
inputs=[
gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"),
gr.inputs.Dropdown(
choices=[
"alshimaa/model_baseline",
"alshimaa/model_yolo7",
#"kadirnar/yolov7-v0.1",
],
default="alshimaa/model_baseline",
label="Model",
),
],
outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
# examples=[
# ["video.mp4", 0.25, 0.45, 0, 2],
# ],
title="Smart Environmental Eye (SEE)",
cache_examples=True,
theme='huggingface',
)
if __name__ == "__main__":
gr.TabbedInterface(
[image_interface, video_interface],
["Run on Images", "Run on Videos"],
).launch()
# import subprocess
# import tempfile
# import time
# from pathlib import Path
# import cv2
# import gradio as gr
# from inferer import Inferer
# pipeline = Inferer("alshimaa/model_yolo7", device='cuda')
# def fn_image(image, conf_thres, iou_thres):
# return pipeline(image, conf_thres, iou_thres)
# def fn_video(video_file, conf_thres, iou_thres, start_sec, duration):
# start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
# end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
# suffix = Path(video_file).suffix
# clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
# subprocess.call(
# f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
# )
# # Reader of clip file
# cap = cv2.VideoCapture(clip_temp_file.name)
# # This is an intermediary temp file where we'll write the video to
# # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
# # with ffmpeg at the end of the function here.
# with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
# out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
# num_frames = 0
# max_frames = duration * 30
# while cap.isOpened():
# try:
# ret, frame = cap.read()
# if not ret:
# break
# except Exception as e:
# print(e)
# continue
# print("FRAME DTYPE", type(frame))
# out.write(pipeline(frame, conf_thres, iou_thres))
# num_frames += 1
# print("Processed {} frames".format(num_frames))
# if num_frames == max_frames:
# break
# out.release()
# # Aforementioned hackiness
# out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
# subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
# return out_file.name
# image_interface = gr.Interface(
# fn=fn_image,
# inputs=[
# "image",
# gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
# gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
# ],
# outputs=gr.Image(type="file"),
# examples=[["image1.jpg", 0.5, 0.5], ["image2.jpg", 0.25, 0.45], ["image3.jpg", 0.25, 0.45]],
# title="Smart Environmental Eye (SEE)",
# allow_flagging=False,
# allow_screenshot=False,
# )
# video_interface = gr.Interface(
# fn=fn_video,
# inputs=[
# gr.Video(type="file"),
# gr.Slider(0, 1, value=0.25, label="Confidence Threshold"),
# gr.Slider(0, 1, value=0.45, label="IOU Threshold"),
# gr.Slider(0, 10, value=0, label="Start Second", step=1),
# gr.Slider(0, 10 if pipeline.device.type != 'cpu' else 3, value=4, label="Duration", step=1),
# ],
# outputs=gr.Video(type="file", format="mp4"),
# # examples=[
# # ["video.mp4", 0.25, 0.45, 0, 2],
# # ],
# title="Smart Environmental Eye (SEE)",
# allow_flagging=False,
# allow_screenshot=False,
# )
# if __name__ == "__main__":
# gr.TabbedInterface(
# [image_interface, video_interface],
# ["Run on Images", "Run on Videos"],
# ).launch()
|