Spaces:
Runtime error
Runtime error
File size: 9,970 Bytes
0f0e0b1 c83cce1 0f0e0b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import gc
import os
import io
import math
import sys
import tempfile
from PIL import Image, ImageOps
import requests
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm.notebook import tqdm
import numpy as np
from math import log2, sqrt
import argparse
import pickle
################################### mask_fusion ######################################
from util.metrics_accumulator import MetricsAccumulator
metrics_accumulator = MetricsAccumulator()
from pathlib import Path
from PIL import Image
################################### mask_fusion ######################################
import clip
import lpips
from torch.nn.functional import mse_loss
################################### CLIPseg ######################################
from torchvision import utils as vutils
import cv2
################################### CLIPseg ######################################
def str2bool(x):
return x.lower() in ('true')
USE_CPU = False
device = torch.device('cuda:0' if (torch.cuda.is_available() and not USE_CPU) else 'cpu')
def fetch(url_or_path):
if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
r = requests.get(url_or_path)
r.raise_for_status()
fd = io.BytesIO()
fd.write(r.content)
fd.seek(0)
return fd
return open(url_or_path, 'rb')
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
return torch.cat(cutouts)
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def do_run(
arg_seed, arg_text, arg_batch_size, arg_num_batches, arg_negative, arg_cutn, arg_edit, arg_height, arg_width,
arg_edit_y, arg_edit_x, arg_edit_width, arg_edit_height, mask, arg_guidance_scale, arg_background_preservation_loss,
arg_lpips_sim_lambda, arg_l2_sim_lambda, arg_ddpm, arg_ddim, arg_enforce_background, arg_clip_guidance_scale,
arg_clip_guidance, model_params, model, diffusion, ldm, bert, clip_model
):
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
if arg_seed >= 0:
torch.manual_seed(arg_seed)
text_emb = bert.encode([arg_text] * arg_batch_size).to(device).float()
text_blank = bert.encode([arg_negative] * arg_batch_size).to(device).float()
text = clip.tokenize([arg_text] * arg_batch_size, truncate=True).to(device)
text_clip_blank = clip.tokenize([arg_negative] * arg_batch_size, truncate=True).to(device)
text_emb_clip = clip_model.encode_text(text)
text_emb_clip_blank = clip_model.encode_text(text_clip_blank)
make_cutouts = MakeCutouts(clip_model.visual.input_resolution, arg_cutn)
text_emb_norm = text_emb_clip[0] / text_emb_clip[0].norm(dim=-1, keepdim=True)
image_embed = None
if arg_edit:
w = arg_edit_width if arg_edit_width else arg_width
h = arg_edit_height if arg_edit_height else arg_height
arg_edit = arg_edit.convert('RGB')
input_image_pil = arg_edit
init_image_pil = input_image_pil.resize((arg_height, arg_width), Image.Resampling.LANCZOS)
input_image_pil = ImageOps.fit(input_image_pil, (w, h))
im = transforms.ToTensor()(input_image_pil).unsqueeze(0).to(device)
init_image = (TF.to_tensor(init_image_pil).to(device).unsqueeze(0).mul(2).sub(1))
im = 2*im-1
im = ldm.encode(im).sample()
y = arg_edit_y//8
x = arg_edit_x//8
input_image = torch.zeros(1, 4, arg_height//8, arg_width//8, device=device)
ycrop = y + im.shape[2] - input_image.shape[2]
xcrop = x + im.shape[3] - input_image.shape[3]
ycrop = ycrop if ycrop > 0 else 0
xcrop = xcrop if xcrop > 0 else 0
input_image[0,:,y if y >=0 else 0:y+im.shape[2],x if x >=0 else 0:x+im.shape[3]] = im[:,:,0 if y > 0 else -y:im.shape[2]-ycrop,0 if x > 0 else -x:im.shape[3]-xcrop]
input_image_pil = ldm.decode(input_image)
input_image_pil = TF.to_pil_image(input_image_pil.squeeze(0).add(1).div(2).clamp(0, 1))
input_image *= 0.18215
new_mask = TF.resize(mask.unsqueeze(0).unsqueeze(0).to(device), (arg_width//8, arg_height//8))
mask1 = (new_mask > 0.5)
mask1 = mask1.float()
input_image *= mask1
image_embed = torch.cat(arg_batch_size*2*[input_image], dim=0).float()
elif model_params['image_condition']:
# using inpaint model but no image is provided
image_embed = torch.zeros(arg_batch_size*2, 4, arg_height//8, arg_width//8, device=device)
kwargs = {
"context": torch.cat([text_emb, text_blank], dim=0).float(),
"clip_embed": torch.cat([text_emb_clip, text_emb_clip_blank], dim=0).float() if model_params['clip_embed_dim'] else None,
"image_embed": image_embed
}
# Create a classifier-free guidance sampling function
def model_fn(x_t, ts, **kwargs):
half = x_t[: len(x_t) // 2]
combined = torch.cat([half, half], dim=0)
model_out = model(combined, ts, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + arg_guidance_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
cur_t = None
@torch.no_grad()
def postprocess_fn(out, t):
if mask is not None:
background_stage_t = diffusion.q_sample(init_image, t[0])
background_stage_t = torch.tile(
background_stage_t, dims=(arg_batch_size, 1, 1, 1)
)
out["sample"] = out["sample"] * mask + background_stage_t * (1 - mask)
return out
# if arg_ddpm:
# sample_fn = diffusion.p_sample_loop_progressive
# elif arg_ddim:
# sample_fn = diffusion.ddim_sample_loop_progressive
# else:
sample_fn = diffusion.plms_sample_loop_progressive
def save_sample(i, sample):
out_ims = []
for k, image in enumerate(sample['pred_xstart'][:arg_batch_size]):
image /= 0.18215
im = image.unsqueeze(0)
out = ldm.decode(im)
metrics_accumulator.print_average_metric()
for b in range(arg_batch_size):
pred_image = sample["pred_xstart"][b]
if arg_enforce_background:
new_mask = TF.resize(mask.unsqueeze(0).unsqueeze(0).to(device), (arg_width, arg_height))
pred_image = (
init_image[0] * new_mask[0] + out * (1 - new_mask[0])
)
pred_image_pil = TF.to_pil_image(pred_image.squeeze(0).add(1).div(2).clamp(0, 1))
out_ims.append(pred_image_pil)
return out_ims
all_saved_ims = []
for i in range(arg_num_batches):
cur_t = diffusion.num_timesteps - 1
samples = sample_fn(
model_fn,
(arg_batch_size*2, 4, int(arg_height//8), int(arg_width//8)),
clip_denoised=False,
model_kwargs=kwargs,
cond_fn=None,
device=device,
progress=True,
)
for j, sample in enumerate(samples):
cur_t -= 1
if j % 5 == 0 and j != diffusion.num_timesteps - 1:
all_saved_ims += save_sample(i, sample)
all_saved_ims += save_sample(i, sample)
return all_saved_ims
def run_model(
segmodel, model, diffusion, ldm, bert, clip_model, model_params,
from_text, instruction, negative_prompt, original_img, seed, guidance_scale, clip_guidance_scale, cutn, l2_sim_lambda
):
input_image = original_img
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
transforms.Resize((256, 256)),
])
img = transform(input_image).unsqueeze(0)
with torch.no_grad():
preds = segmodel(img.repeat(1,1,1,1), from_text)[0]
mask = torch.sigmoid(preds[0][0])
image = (mask.detach().cpu().numpy() * 255).astype(np.uint8) # cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
ret, thresh = cv2.threshold(image, 100, 255, cv2.THRESH_TRUNC, image)
timg = np.array(thresh)
x, y = timg.shape
for row in range(x):
for col in range(y):
if (timg[row][col]) == 100:
timg[row][col] = 255
if (timg[row][col]) < 100:
timg[row][col] = 0
fulltensor = torch.full_like(mask, fill_value=255)
bgtensor = fulltensor-timg
mask = bgtensor / 255.0
gc.collect()
use_ddim = False
use_ddpm = False
all_saved_ims = do_run(
seed, instruction, 1, 1, negative_prompt, cutn, input_image, 256, 256,
0, 0, 0, 0, mask, guidance_scale, True,
1000, l2_sim_lambda, use_ddpm, use_ddim, True, clip_guidance_scale, False,
model_params, model, diffusion, ldm, bert, clip_model
)
return all_saved_ims[-1]
|