import pandas as pd def data_processing(df: pd.DataFrame) -> pd.DataFrame: """ For each id, creates a new row with the longest content and the highest score from the available rows with the same id. Adds a boolean column 'updated' indicating whether the row was updated. Parameters: - df (pd.DataFrame): The input DataFrame with columns 'id', 'content', and 'score'. Returns: - pd.DataFrame: A DataFrame with unique ids, where each id is associated with the longest content available and the highest score from potentially different rows, and a boolean column 'updated'. """ # Create a copy of the original DataFrame to avoid modifying it directly original_df = df.copy() # Create a column for content length df['content_length'] = df['content'].str.len() # Find row with the longest content for each 'id' idx_longest_content = df.groupby('id')['content_length'].idxmax().values df_longest_content = df.loc[idx_longest_content][['id', 'content']] # Find row with the highest score for each 'id' idx_highest_score = df.groupby('id')['score'].idxmax().values df_highest_score = df.loc[idx_highest_score][['id', 'score']] # Merge the two DataFrames on 'id' df_merged = pd.merge(df_longest_content, df_highest_score, on='id') # Check if the content or score was updated for each id df_merged = df_merged.merge(original_df, on='id', suffixes=('', '_original')) df_merged['updated'] = (df_merged['content'] != df_merged['content_original']) | ( df_merged['score'] != df_merged['score_original']) # Drop duplicates to keep only the rows with longest content and highest score df_merged.drop_duplicates(subset='id', inplace=True) # Drop original content and score columns df_merged.drop(columns=['content_original', 'score_original'], inplace=True) return df_merged if __name__ == '__main__': # Mock data data = { 'id': [1, 1, 2, 2, 3], 'content': ['short', 'much longer content', 'mid', 'size', 'constant'], 'score': [10, 5, 7, 9, 6], 'another_column': ['a', 'a', 'b', 'b', 'c'] } df = pd.DataFrame(data) print("Original DataFrame:") print(df) print("\nFiltered DataFrame:") print(data_processing(df))