Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import numpy as np
|
|
5 |
import spaces
|
6 |
import torch
|
7 |
from diffusers import DiffusionPipeline
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
@@ -33,9 +34,14 @@ def inference(
|
|
33 |
):
|
34 |
if randomize_seed:
|
35 |
seed = random.randint(0, MAX_SEED)
|
|
|
36 |
|
37 |
-
|
38 |
|
|
|
|
|
|
|
|
|
39 |
image = pipeline(
|
40 |
prompt=prompt,
|
41 |
guidance_scale=guidance_scale,
|
@@ -43,9 +49,11 @@ def inference(
|
|
43 |
width=width,
|
44 |
height=height,
|
45 |
generator=generator,
|
46 |
-
|
47 |
).images[0]
|
48 |
|
|
|
|
|
49 |
return image, seed
|
50 |
|
51 |
|
@@ -118,14 +126,6 @@ with gr.Blocks(css=css) as demo:
|
|
118 |
value=3.5,
|
119 |
)
|
120 |
|
121 |
-
lora_scale = gr.Slider(
|
122 |
-
label="LoRA scale",
|
123 |
-
minimum=0.0,
|
124 |
-
maximum=1.0,
|
125 |
-
step=0.1,
|
126 |
-
value=1.0,
|
127 |
-
)
|
128 |
-
|
129 |
num_inference_steps = gr.Slider(
|
130 |
label="Number of inference steps",
|
131 |
minimum=1,
|
@@ -134,7 +134,15 @@ with gr.Blocks(css=css) as demo:
|
|
134 |
value=30,
|
135 |
)
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
gr.on(
|
140 |
triggers=[run_button.click, prompt.submit],
|
@@ -147,8 +155,10 @@ with gr.Blocks(css=css) as demo:
|
|
147 |
height,
|
148 |
guidance_scale,
|
149 |
num_inference_steps,
|
|
|
150 |
],
|
151 |
outputs=[result, seed],
|
152 |
)
|
153 |
|
154 |
-
demo.queue()
|
|
|
|
5 |
import spaces
|
6 |
import torch
|
7 |
from diffusers import DiffusionPipeline
|
8 |
+
from PIL import Image
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
|
|
34 |
):
|
35 |
if randomize_seed:
|
36 |
seed = random.randint(0, MAX_SEED)
|
37 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
38 |
|
39 |
+
progress(0, "Starting image generation...")
|
40 |
|
41 |
+
for i in range(1, steps + 1):
|
42 |
+
if i % (steps // 10) == 0:
|
43 |
+
progress(i / steps * 100, f"Processing step {i} of {steps}...")
|
44 |
+
|
45 |
image = pipeline(
|
46 |
prompt=prompt,
|
47 |
guidance_scale=guidance_scale,
|
|
|
49 |
width=width,
|
50 |
height=height,
|
51 |
generator=generator,
|
52 |
+
joint_attention_kwargs={"scale": lora_scale},
|
53 |
).images[0]
|
54 |
|
55 |
+
progress(100, "Completed!")
|
56 |
+
|
57 |
return image, seed
|
58 |
|
59 |
|
|
|
126 |
value=3.5,
|
127 |
)
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
num_inference_steps = gr.Slider(
|
130 |
label="Number of inference steps",
|
131 |
minimum=1,
|
|
|
134 |
value=30,
|
135 |
)
|
136 |
|
137 |
+
lora_scale = gr.Slider(
|
138 |
+
label="LoRA scale",
|
139 |
+
minimum=0.0,
|
140 |
+
maximum=1.0,
|
141 |
+
step=0.1,
|
142 |
+
value=1.0,
|
143 |
+
)
|
144 |
+
|
145 |
+
gr.Examples(examples=examples, inputs=[prompt], outputs=[Image.open("./example.png")])
|
146 |
|
147 |
gr.on(
|
148 |
triggers=[run_button.click, prompt.submit],
|
|
|
155 |
height,
|
156 |
guidance_scale,
|
157 |
num_inference_steps,
|
158 |
+
lora_scale,
|
159 |
],
|
160 |
outputs=[result, seed],
|
161 |
)
|
162 |
|
163 |
+
demo.queue()
|
164 |
+
demo.launch()
|