import random import gradio as gr import numpy as np import spaces import torch from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" repo_id = "black-forest-labs/FLUX.1-dev" adapter_id = "alvarobartt/ghibli-characters-flux-lora" pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16) pipeline.load_lora_weights(adapter_id) pipeline = pipeline.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU(duration=120) def inference( prompt: str, seed: int, randomize_seed: bool, width: int, height: int, guidance_scale: float, num_inference_steps: int, lora_scale: float, progress: gr.Progress = gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipeline( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, lora_scale=lora_scale, ).images[0] return image, seed examples = [ ( "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet," " standing heroically on a lush alien planet, vibrant flowers blooming around, soft" " sunlight illuminating the scene, a gentle breeze rustling the leaves" ) ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# FLUX.1 Ghibli Studio LoRA") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5, ) lora_scale = gr.Slider( label="LoRA scale", minimum=0.0, maximum=1.0, step=0.1, value=1.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=30, ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=inference, inputs=[ prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) demo.queue().launch()