Spaces:
Configuration error
Configuration error
import evaluate | |
import datasets | |
import lm_eval | |
# TODO: Add BibTeX citation | |
_CITATION = """ | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """ | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
""" | |
class llm_harness_mistral_arc(evaluate.Metric): | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=[ | |
datasets.Features( | |
{ | |
"pretrained": datasets.Value("string", id="sequence"), | |
"tasks": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), | |
} | |
) | |
], | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _compute(self, pretrained, tasks): | |
outputs = lm_eval.simple_evaluate( | |
model="hf", | |
model_args={"pretrained":pretrained}, | |
tasks=tasks, | |
num_fewshot=0, | |
) | |
results = {} | |
for task in outputs['results']: | |
results[task] = {'acc':outputs['results'][task]['acc,none'], | |
'acc_norm':outputs['results'][task]['acc_norm,none']} | |
return results | |