alvdansen commited on
Commit
bd1e951
Β·
verified Β·
1 Parent(s): 85b3dcf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +179 -14
app.py CHANGED
@@ -66,10 +66,21 @@ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
66
  model_id = "stabilityai/stable-diffusion-xl-base-1.0"
67
 
68
  pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
69
- pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
70
- pipe.load_lora_weights("jasperai/flash-sdxl", adapter_name="flash_lora")
 
 
 
 
 
 
 
71
  pipe.to(device=DEVICE, dtype=torch.float16)
72
 
 
 
 
 
73
  MAX_SEED = np.iinfo(np.int32).max
74
  MAX_IMAGE_SIZE = 1024
75
 
@@ -92,17 +103,11 @@ def infer(
92
  progress=gr.Progress(track_tqdm=True),
93
  ):
94
  try:
95
- flash_sdxl_id = "jasperai/flash-sdxl"
96
-
97
  new_adapter_id = user_lora_selector.replace("/", "_")
98
- loaded_adapters = pipe.get_list_adapters()
99
-
100
- if "flash_lora" not in loaded_adapters["unet"] or new_adapter_id not in loaded_adapters["unet"]:
101
- gr.Info("Loading LoRAs")
102
- pipe.unload_lora_weights()
103
- pipe.load_lora_weights(flash_sdxl_id, adapter_name="flash_lora")
104
- pipe.load_lora_weights(user_lora_selector, adapter_name=new_adapter_id)
105
 
 
106
  pipe.set_adapters(["flash_lora", new_adapter_id], adapter_weights=[1.0, user_lora_weight])
107
  gr.Info("LoRA setup complete")
108
 
@@ -114,11 +119,12 @@ def infer(
114
  if pre_prompt != "":
115
  prompt = f"{pre_prompt} {prompt}"
116
 
 
117
  image = pipe(
118
  prompt=prompt,
119
  negative_prompt=negative_prompt,
120
- guidance_scale=guidance_scale,
121
- num_inference_steps=num_inference_steps,
122
  generator=generator,
123
  ).images[0]
124
 
@@ -127,6 +133,165 @@ def infer(
127
  gr.Error(f"An error occurred: {str(e)}")
128
  return None
129
 
130
- # ... (rest of the Gradio interface code remains the same)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
  demo.queue().launch()
 
66
  model_id = "stabilityai/stable-diffusion-xl-base-1.0"
67
 
68
  pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
69
+
70
+ # Create LCMScheduler with default config
71
+ lcm_scheduler = LCMScheduler.from_config(pipe.scheduler.config)
72
+
73
+ # Remove the 'skip_prk_steps' if it exists in the config
74
+ if hasattr(lcm_scheduler.config, 'skip_prk_steps'):
75
+ delattr(lcm_scheduler.config, 'skip_prk_steps')
76
+
77
+ pipe.scheduler = lcm_scheduler
78
  pipe.to(device=DEVICE, dtype=torch.float16)
79
 
80
+ # Load Flash SDXL LoRA
81
+ flash_sdxl_id = "jasperai/flash-sdxl"
82
+ pipe.load_lora_weights(flash_sdxl_id, adapter_name="flash_lora")
83
+
84
  MAX_SEED = np.iinfo(np.int32).max
85
  MAX_IMAGE_SIZE = 1024
86
 
 
103
  progress=gr.Progress(track_tqdm=True),
104
  ):
105
  try:
106
+ # Load the user-selected LoRA
 
107
  new_adapter_id = user_lora_selector.replace("/", "_")
108
+ pipe.load_lora_weights(user_lora_selector, adapter_name=new_adapter_id)
 
 
 
 
 
 
109
 
110
+ # Set adapter weights
111
  pipe.set_adapters(["flash_lora", new_adapter_id], adapter_weights=[1.0, user_lora_weight])
112
  gr.Info("LoRA setup complete")
113
 
 
119
  if pre_prompt != "":
120
  prompt = f"{pre_prompt} {prompt}"
121
 
122
+ # Use Flash Diffusion settings
123
  image = pipe(
124
  prompt=prompt,
125
  negative_prompt=negative_prompt,
126
+ guidance_scale=1.0, # Flash Diffusion typically uses guidance_scale=1
127
+ num_inference_steps=4, # Flash Diffusion uses fewer steps
128
  generator=generator,
129
  ).images[0]
130
 
 
133
  gr.Error(f"An error occurred: {str(e)}")
134
  return None
135
 
136
+ css = """
137
+ h1 {
138
+ text-align: center;
139
+ display:block;
140
+ }
141
+ p {
142
+ text-align: justify;
143
+ display:block;
144
+ }
145
+ """
146
+
147
+ with gr.Blocks(css=css) as demo:
148
+ gr.Markdown(
149
+ f"""
150
+ # ⚑ FlashDiffusion: FlashLoRA ⚑
151
+ This is an interactive demo of [Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/) **on top of** existing LoRAs.
152
+
153
+ The distillation method proposed in [Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by ClΓ©ment Chadebec, Onur Tasar, Eyal Benaroche and Benjamin Aubin* from Jasper Research.
154
+ The LoRAs can be added **without** any retraining for similar results in most cases. Feel free to tweak the parameters and use your own LoRAs by giving a look at the [Github Repo](https://github.com/gojasper/flash-diffusion)
155
+ """
156
+ )
157
+ gr.Markdown(
158
+ "If you enjoy the space, please also promote *open-source* by giving a ⭐ to our repo [![GitHub Stars](https://img.shields.io/github/stars/gojasper/flash-diffusion?style=social)](https://github.com/gojasper/flash-diffusion)"
159
+ )
160
+
161
+ gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
162
+ gr_lora_id = gr.State(value="")
163
+
164
+ with gr.Row():
165
+ with gr.Blocks():
166
+ with gr.Column():
167
+ user_lora_selector = gr.Textbox(
168
+ label="Current Selected LoRA",
169
+ max_lines=1,
170
+ interactive=False,
171
+ )
172
+
173
+ user_lora_weight = gr.Slider(
174
+ label="Selected LoRA Weight",
175
+ minimum=0.5,
176
+ maximum=3,
177
+ step=0.1,
178
+ value=1,
179
+ )
180
+
181
+ gallery = gr.Gallery(
182
+ value=[(item["image"], item["title"]) for item in sdxl_loras_raw],
183
+ label="SDXL LoRA Gallery",
184
+ allow_preview=False,
185
+ columns=3,
186
+ elem_id="gallery",
187
+ show_share_button=False,
188
+ )
189
+
190
+ with gr.Column():
191
+ with gr.Row():
192
+ prompt = gr.Text(
193
+ label="Prompt",
194
+ show_label=False,
195
+ max_lines=1,
196
+ placeholder="Enter your prompt",
197
+ container=False,
198
+ scale=5,
199
+ )
200
+
201
+ run_button = gr.Button("Run", scale=1)
202
+
203
+ result = gr.Image(label="Result", show_label=False)
204
+
205
+ with gr.Accordion("Advanced Settings", open=False):
206
+ pre_prompt = gr.Text(
207
+ label="Pre-Prompt",
208
+ show_label=True,
209
+ max_lines=1,
210
+ placeholder="Pre Prompt from the LoRA config",
211
+ container=True,
212
+ scale=5,
213
+ )
214
+
215
+ seed = gr.Slider(
216
+ label="Seed",
217
+ minimum=0,
218
+ maximum=MAX_SEED,
219
+ step=1,
220
+ value=0,
221
+ )
222
+
223
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
224
+
225
+ with gr.Row():
226
+ num_inference_steps = gr.Slider(
227
+ label="Number of inference steps",
228
+ minimum=4,
229
+ maximum=8,
230
+ step=1,
231
+ value=4,
232
+ )
233
+
234
+ with gr.Row():
235
+ guidance_scale = gr.Slider(
236
+ label="Guidance Scale",
237
+ minimum=1,
238
+ maximum=6,
239
+ step=0.5,
240
+ value=1,
241
+ )
242
+
243
+ hint_negative = gr.Markdown(
244
+ """πŸ’‘ _Hint : Negative Prompt will only work with Guidance > 1 but the model was
245
+ trained to be used with guidance = 1 (ie. without guidance).
246
+ Can degrade the results, use cautiously._"""
247
+ )
248
+
249
+ negative_prompt = gr.Text(
250
+ label="Negative Prompt",
251
+ show_label=False,
252
+ max_lines=1,
253
+ placeholder="Enter a negative Prompt",
254
+ container=False,
255
+ )
256
+
257
+ gr.on(
258
+ [
259
+ run_button.click,
260
+ seed.change,
261
+ randomize_seed.change,
262
+ prompt.submit,
263
+ negative_prompt.change,
264
+ negative_prompt.submit,
265
+ guidance_scale.change,
266
+ ],
267
+ fn=infer,
268
+ inputs=[
269
+ pre_prompt,
270
+ prompt,
271
+ seed,
272
+ randomize_seed,
273
+ num_inference_steps,
274
+ negative_prompt,
275
+ guidance_scale,
276
+ user_lora_selector,
277
+ user_lora_weight,
278
+ ],
279
+ outputs=[result],
280
+ )
281
+
282
+ gallery.select(
283
+ fn=update_selection,
284
+ inputs=[gr_sdxl_loras],
285
+ outputs=[
286
+ user_lora_selector,
287
+ pre_prompt,
288
+ ],
289
+ show_progress="hidden",
290
+ )
291
+
292
+ gr.Markdown("**Disclaimer:**")
293
+ gr.Markdown(
294
+ "This demo is only for research purpose. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards."
295
+ )
296
 
297
  demo.queue().launch()