File size: 7,026 Bytes
e5411de
8f11748
 
 
 
5749979
2f25933
2876fc2
 
 
 
 
2f25933
5749979
 
 
 
 
 
 
 
 
 
 
 
2099bec
5749979
 
 
 
 
 
e5411de
75c2013
2876fc2
 
 
 
 
 
 
 
 
 
 
 
5933911
 
2876fc2
 
 
 
 
 
 
 
 
 
 
bd711e3
2876fc2
 
bd711e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75c2013
d63e721
2876fc2
d63e721
2876fc2
5749979
bd711e3
 
 
 
2876fc2
bd711e3
 
 
8f11748
bd711e3
e5411de
8f11748
 
 
 
 
 
88cf799
8f11748
 
 
 
bd711e3
ab57d7f
75c2013
88cf799
8f11748
 
 
 
 
 
 
 
 
88cf799
8f11748
 
 
d63e721
bd711e3
8f11748
 
 
2876fc2
 
 
 
 
 
8f11748
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import spaces
import librosa
import soundfile as sf
import wavio
import os
import subprocess
import pickle
import torch
import torch.nn as nn
from transformers import T5Tokenizer
from transformer_model import Transformer


def save_wav(filepath):
    # Extract the directory and the stem (filename without extension)
    directory = os.path.dirname(filepath)
    stem = os.path.splitext(os.path.basename(filepath))[0]

    # Construct the full paths for MIDI and WAV files
    midi_filepath = os.path.join(directory, f"{stem}.mid")
    wav_filepath = os.path.join(directory, f"{stem}.wav")

    # Run the fluidsynth command to convert MIDI to WAV
    process = subprocess.Popen(
        f"fluidsynth -r 16000 soundfont.sf2 -g 1.0 --quiet --no-shell {midi_filepath} -T wav -F {wav_filepath} > /dev/null",
        shell=True
    )
    process.wait()

    return wav_filepath


def generate_midi(caption, temperature=0.9, max_len=500):
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    artifact_folder = 'artifacts'

    tokenizer_filepath = os.path.join(artifact_folder, "vocab_remi.pkl")
    # Load the tokenizer dictionary
    with open(tokenizer_filepath, "rb") as f:
        r_tokenizer = pickle.load(f)

    # Get the vocab size
    vocab_size = len(r_tokenizer)
    print("Vocab size: ", vocab_size)
    model = Transformer(vocab_size, 768, 8, 5000, 18, 1024, False, 8, device=device)
    model_path = os.path.join(artifact_folder, "pytorch_model_95.bin")
    model.load_state_dict(torch.load(model_path, map_location=device))
    model.eval()
    tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")

    inputs = tokenizer(caption, return_tensors='pt', padding=True, truncation=True)
    input_ids = nn.utils.rnn.pad_sequence(inputs.input_ids, batch_first=True, padding_value=0)
    input_ids = input_ids.to(device)
    attention_mask =nn.utils.rnn.pad_sequence(inputs.attention_mask, batch_first=True, padding_value=0) 
    attention_mask = attention_mask.to(device)
    output = model.generate(input_ids, attention_mask, max_len=max_len,temperature = temperature)
    output_list = output[0].tolist()
    generated_midi = r_tokenizer.decode(output_list)
    print(generated_midi)
    generated_midi.dump_midi("output.mid")

# @spaces.GPU(duration=120)
# def gradio_generate(prompt, temperature, max_length):
#     # Generate midi
#     generate_midi(prompt, temperature, max_length)

#     # Convert midi to wav
#     filename = "output.mid"
#     save_wav(filename)
#     filename = filename.replace(".mid", ".wav")
#     # Read the generated WAV file
#     output_wave, samplerate = sf.read(filename, dtype='float32')
#     output_filename = "temp.wav"
#     wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
    
#     return output_filename

@spaces.GPU(duration=120)
def gradio_generate(prompt, temperature, max_length):
    # Generate midi
    generate_midi(prompt, temperature, max_length)

    # Convert midi to wav
    midi_filename = "output.mid"
    save_wav(midi_filename)
    wav_filename = midi_filename.replace(".mid", ".wav")

    # Read the generated WAV file
    output_wave, samplerate = sf.read(wav_filename, dtype='float32')
    temp_wav_filename = "temp.wav"
    wavio.write(temp_wav_filename, output_wave, rate=16000, sampwidth=2)
    
    return temp_wav_filename, midi_filename  # Return both WAV and MIDI file paths

title="Text2midi: Generating Symbolic Music from Captions"
description_text = """
<p><a href="https://huggingface.co/spaces/amaai-lab/text2midi/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
Generate midi music using Text2midi by providing a text prompt.
<br/><br/> This is the demo for Text2midi for controllable text to midi generation: <a href="https://arxiv.org/abs/tbd">Read our paper.</a>
<p/>
"""
#description_text = ""
# Gradio input and output components
input_text = gr.Textbox(lines=2, label="Prompt")
output_audio = gr.Audio(label="Generated Music", type="filepath")
output_midi = gr.File(label="Download MIDI File")
temperature = gr.Slider(minimum=0.5, maximum=1.2, value=1.0, step=0.1, label="Temperature", interactive=True)
max_length = gr.Number(value=500, label="Max Length", minimum=100, maximum=2000, step=100)

# CSS styling for the Duplicate button
css = '''
#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
'''

# Gradio interface
gr_interface = gr.Interface(
    fn=gradio_generate,
    inputs=[input_text, temperature, max_length],
    outputs=[output_audio, output_midi],
    description=description_text,
    allow_flagging=False,
    examples=[
        ["A cheerful and melodic pop Christmas song featuring piano, acoustic guitar, vibraphone, bass, and drums, set in the key of Eb minor with a fast tempo of 123 bpm and a 4/4 time signature, creating a joyful and relaxing atmosphere."],
        ["A melodic electronic song with ambient elements, featuring piano, acoustic guitar, alto saxophone, string ensemble, and electric bass. Set in G minor with a 4/4 time signature, it moves at a lively Presto tempo. The composition evokes a blend of relaxation and darkness, with hints of happiness and a meditative quality."],
        ["This motivational electronic and pop song features a clean electric guitar, rock organ, synth voice, acoustic guitar, and vibraphone, creating a melodic and uplifting atmosphere. Set in the key of G# minor with a 4/4 time signature, the track moves at an energetic Allegro tempo of 120 beats per minute. The chord progression of Bbm7 and F# adds to the song's inspiring and corporate feel."],
        ["This short electronic song in C minor features a brass section, string ensemble, tenor saxophone, clean electric guitar, and slap bass, creating a melodic and slightly dark atmosphere. With a tempo of 124 BPM (Allegro) and a 4/4 time signature, the track incorporates a chord progression of C7/E, Eb6, and Bbm6, adding a touch of corporate and motivational vibes to the overall composition."],
        ["An energetic and melodic electronic trance track with a space and retro vibe, featuring drums, distortion guitar, flute, synth bass, and slap bass. Set in A minor with a fast tempo of 138 BPM, the song maintains a 4/4 time signature throughout its duration."],
        ["A short but energetic rock fragment in C minor, featuring overdriven guitars, electric bass, and drums, with a vivacious tempo of 155 BPM and a 4/4 time signature, evoking a blend of dark and melodic tones."],
    ],
    cache_examples="lazy",
)

with gr.Blocks(css=css) as demo:
    title=gr.HTML(f"<h1><center>{title}</center></h1>")
    dupe = gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    gr_interface.render()
   

# Launch Gradio app.
demo.queue().launch()