import gradio as gr import spaces import librosa import soundfile as sf import wavio import os import subprocess import pickle import torch import torch.nn as nn from transformers import T5Tokenizer from transformer_model import Transformer def save_wav(filepath): # Extract the directory and the stem (filename without extension) directory = os.path.dirname(filepath) stem = os.path.splitext(os.path.basename(filepath))[0] # Construct the full paths for MIDI and WAV files midi_filepath = os.path.join(directory, f"{stem}.mid") wav_filepath = os.path.join(directory, f"{stem}.wav") # Run the fluidsynth command to convert MIDI to WAV process = subprocess.Popen( f"fluidsynth -r 16000 soundfont.sf -g 1.0 --quiet --no-shell {midi_filepath} -T wav -F {wav_filepath} > /dev/null", shell=True ) process.wait() return wav_filepath def generate_midi(caption, temperature=0.9, max_len=3000): device = 'cuda' if torch.cuda.is_available() else 'cpu' artifact_folder = 'artifacts' tokenizer_filepath = os.path.join(artifact_folder, "vocab_remi.pkl") # Load the tokenizer dictionary with open(tokenizer_filepath, "rb") as f: r_tokenizer = pickle.load(f) # Get the vocab size vocab_size = len(r_tokenizer) print("Vocab size: ", vocab_size) model = Transformer(vocab_size, 768, 8, 5000, 18, 1024, False, 8, device=device) model.load_state_dict(torch.load('/artifacts/pytorch_model_95.bin', map_location=device)) model.eval() tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") # caption = "A cinematic electronic soundtrack that evokes an epic and dark atmosphere, featuring cello, contrabass, and drums. The song is set in A minor with a moderate tempo and a 4/4 time signature, creating an emotional and action-packed ambiance suitable for film." inputs = tokenizer(caption, return_tensors='pt', padding=True, truncation=True) input_ids = nn.utils.rnn.pad_sequence(inputs.input_ids, batch_first=True, padding_value=0) input_ids = input_ids.to(device) attention_mask =nn.utils.rnn.pad_sequence(inputs.attention_mask, batch_first=True, padding_value=0) attention_mask = attention_mask.to(device) output = model.generate(input_ids, attention_mask, max_len=max_len,temperature = temperature) output_list = output[0].tolist() generated_midi = r_tokenizer.decode(output_list) generated_midi.dump_midi("output.mid") # @spaces.GPU(duration=120) def gradio_generate(prompt, temperature): # Generate midi generate_midi(prompt, temperature) # Convert midi to wav filename = "output.mid" save_wav(filename) filename = filename.replace(".mid", ".wav") # Read the generated WAV file output_wave, samplerate = sf.read(filename, dtype='float32') output_filename = "temp.wav" wavio.write(output_filename, output_wave, rate=16000, sampwidth=2) return output_filename title="Text2midi: Generating Symbolic Music from Captions" description_text = """

Duplicate Space For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings.

Generate midi music using Text2midi by providing a text prompt.

This is the demo for Text2midi for controllable text to midi generation: Read our paper.

""" #description_text = "" # Gradio input and output components input_text = gr.Textbox(lines=2, label="Prompt") output_audio = gr.Audio(label="Generated Music", type="filepath") temperature = gr.Slider(minimum=0.5, maximum=1.2, value=1.0, step=0.1, label="Temperature", interactive=True) # CSS styling for the Duplicate button css = ''' #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } ''' # Gradio interface gr_interface = gr.Interface( fn=gradio_generate, inputs=[input_text, temperature], outputs=[output_audio], description=description_text, allow_flagging=False, examples=[ ["A cheerful and melodic pop Christmas song featuring piano, acoustic guitar, vibraphone, bass, and drums, set in the key of Eb minor with a fast tempo of 123 bpm and a 4/4 time signature, creating a joyful and relaxing atmosphere."], ["A melodic electronic song with ambient elements, featuring piano, acoustic guitar, alto saxophone, string ensemble, and electric bass. Set in G minor with a 4/4 time signature, it moves at a lively Presto tempo. The composition evokes a blend of relaxation and darkness, with hints of happiness and a meditative quality."], ["This motivational electronic and pop song features a clean electric guitar, rock organ, synth voice, acoustic guitar, and vibraphone, creating a melodic and uplifting atmosphere. Set in the key of G# minor with a 4/4 time signature, the track moves at an energetic Allegro tempo of 120 beats per minute. The chord progression of Bbm7 and F# adds to the song's inspiring and corporate feel."], ["This short electronic song in C minor features a brass section, string ensemble, tenor saxophone, clean electric guitar, and slap bass, creating a melodic and slightly dark atmosphere. With a tempo of 124 BPM (Allegro) and a 4/4 time signature, the track incorporates a chord progression of C7/E, Eb6, and Bbm6, adding a touch of corporate and motivational vibes to the overall composition."], ["An energetic and melodic electronic trance track with a space and retro vibe, featuring drums, distortion guitar, flute, synth bass, and slap bass. Set in A minor with a fast tempo of 138 BPM, the song maintains a 4/4 time signature throughout its duration."], ["A short but energetic rock fragment in C minor, featuring overdriven guitars, electric bass, and drums, with a vivacious tempo of 155 BPM and a 4/4 time signature, evoking a blend of dark and melodic tones."], ], cache_examples="lazy", ) with gr.Blocks(css=css) as demo: title=gr.HTML(f"

{title}

") dupe = gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") gr_interface.render() # Launch Gradio app. demo.queue().launch()