Spaces:
Running
on
T4
Running
on
T4
File size: 19,819 Bytes
4e46a55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn.parameter import Parameter
from torch.nn import Module
from torch.nn.modules.transformer import _get_clones
from torch.nn.modules.linear import Linear
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.normalization import LayerNorm
from torch.nn.init import *
from torch.nn.functional import linear, softmax, dropout
from torch.nn import MultiheadAttention
from typing import Optional
class TransformerDecoderRPR(Module):
def __init__(self, decoder_layer, num_layers, norm=None):
super(TransformerDecoderRPR, self).__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None):
output = tgt
for mod in self.layers:
output = mod(output, memory, tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask)
if self.norm is not None:
output = self.norm(output)
return output
class TransformerDecoderLayerRPR(Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, er_len=None):
super(TransformerDecoderLayerRPR, self).__init__()
self.self_attn = MultiheadAttentionRPR(d_model, nhead, dropout=dropout, er_len=er_len)
self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = Linear(d_model, dim_feedforward)
self.dropout = Dropout(dropout)
self.linear2 = Linear(dim_feedforward, d_model)
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.norm3 = LayerNorm(d_model)
self.dropout1 = Dropout(dropout)
self.dropout2 = Dropout(dropout)
self.dropout3 = Dropout(dropout)
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
tgt_key_padding_mask=None, memory_key_padding_mask=None):
tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(F.relu(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
# TransformerEncoderRPR (only for music transformer)
class TransformerEncoderRPR(Module):
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoderRPR, self).__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, src, mask=None, src_key_padding_mask=None):
output = src
for i in range(self.num_layers):
output = self.layers[i](output, src_mask=mask,
src_key_padding_mask=src_key_padding_mask)
if self.norm:
output = self.norm(output)
return output
# TransformerEncoderLayerRPR (only for music transformer)
class TransformerEncoderLayerRPR(Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, er_len=None):
super(TransformerEncoderLayerRPR, self).__init__()
self.self_attn = MultiheadAttentionRPR(d_model, nhead, dropout=dropout, er_len=er_len)
# Implementation of Feedforward model
self.linear1 = Linear(d_model, dim_feedforward)
self.dropout = Dropout(dropout)
self.linear2 = Linear(dim_feedforward, d_model)
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.dropout1 = Dropout(dropout)
self.dropout2 = Dropout(dropout)
def forward(self, src, src_mask=None, src_key_padding_mask=None):
src2 = self.self_attn(src, src, src, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(F.relu(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
# MultiheadAttentionRPR
class MultiheadAttentionRPR(Module):
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, er_len=None):
super(MultiheadAttentionRPR, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
if self._qkv_same_embed_dim is False:
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
if bias:
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
# Adding RPR embedding matrix
if(er_len is not None):
self.Er = Parameter(torch.rand((er_len, self.head_dim), dtype=torch.float32))
else:
self.Er = None
self._reset_parameters()
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def forward(self, query, key, value, key_padding_mask=None,
need_weights=True, attn_mask=None):
if hasattr(self, '_qkv_same_embed_dim') and self._qkv_same_embed_dim is False:
return multi_head_attention_forward_rpr(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight, rpr_mat=self.Er)
else:
if not hasattr(self, '_qkv_same_embed_dim'):
warnings.warn('A new version of MultiheadAttention module has been implemented. \
Please re-train your model with the new module',
UserWarning)
return multi_head_attention_forward_rpr(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, rpr_mat=self.Er)
# multi_head_attention_forward_rpr
def multi_head_attention_forward_rpr(query, # type: Tensor
key, # type: Tensor
value, # type: Tensor
embed_dim_to_check, # type: int
num_heads, # type: int
in_proj_weight, # type: Tensor
in_proj_bias, # type: Tensor
bias_k, # type: Optional[Tensor]
bias_v, # type: Optional[Tensor]
add_zero_attn, # type: bool
dropout_p, # type: float
out_proj_weight, # type: Tensor
out_proj_bias, # type: Tensor
training=True, # type: bool
key_padding_mask=None, # type: Optional[Tensor]
need_weights=True, # type: bool
attn_mask=None, # type: Optional[Tensor]
use_separate_proj_weight=False, # type: bool
q_proj_weight=None, # type: Optional[Tensor]
k_proj_weight=None, # type: Optional[Tensor]
v_proj_weight=None, # type: Optional[Tensor]
static_k=None, # type: Optional[Tensor]
static_v=None, # type: Optional[Tensor]
rpr_mat=None
):
"""
----------
Author: Pytorch
Modified: Damon Gwinn
----------
For Relative Position Representation support (https://arxiv.org/abs/1803.02155)
https://pytorch.org/docs/1.2.0/_modules/torch/nn/functional.html
Modification to take RPR embedding matrix and perform skew optimized RPR (https://arxiv.org/abs/1809.04281)
----------
"""
# type: (...) -> Tuple[Tensor, Optional[Tensor]]
qkv_same = torch.equal(query, key) and torch.equal(key, value)
kv_same = torch.equal(key, value)
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == embed_dim_to_check
assert list(query.size()) == [tgt_len, bsz, embed_dim]
assert key.size() == value.size()
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
scaling = float(head_dim) ** -0.5
if use_separate_proj_weight is not True:
if qkv_same:
# self-attention
q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
elif kv_same:
# encoder-decoder attention
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = linear(query, _w, _b)
if key is None:
assert value is None
k = None
v = None
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
k, v = linear(key, _w, _b).chunk(2, dim=-1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = linear(query, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = embed_dim * 2
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k = linear(key, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim * 2
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
v = linear(value, _w, _b)
else:
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
len1, len2 = q_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == query.size(-1)
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
len1, len2 = k_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == key.size(-1)
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
len1, len2 = v_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == value.size(-1)
if in_proj_bias is not None:
q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
else:
q = linear(query, q_proj_weight_non_opt, in_proj_bias)
k = linear(key, k_proj_weight_non_opt, in_proj_bias)
v = linear(value, v_proj_weight_non_opt, in_proj_bias)
q = q * scaling
if bias_k is not None and bias_v is not None:
if static_k is None and static_v is None:
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask,
torch.zeros((attn_mask.size(0), 1),
dtype=attn_mask.dtype,
device=attn_mask.device)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
dtype=key_padding_mask.dtype,
device=key_padding_mask.device)], dim=1)
else:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
else:
assert bias_k is None
assert bias_v is None
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if static_k is not None:
assert static_k.size(0) == bsz * num_heads
assert static_k.size(2) == head_dim
k = static_k
if static_v is not None:
assert static_v.size(0) == bsz * num_heads
assert static_v.size(2) == head_dim
v = static_v
src_len = k.size(1)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if add_zero_attn:
src_len += 1
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, torch.zeros((attn_mask.size(0), 1),
dtype=attn_mask.dtype,
device=attn_mask.device)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
dtype=key_padding_mask.dtype,
device=key_padding_mask.device)], dim=1)
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
######### ADDITION OF RPR ###########
if(rpr_mat is not None):
rpr_mat = _get_valid_embedding(rpr_mat, q.shape[1], k.shape[1])
qe = torch.einsum("hld,md->hlm", q, rpr_mat)
srel = _skew(qe)
attn_output_weights += srel
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
attn_output_weights += attn_mask
if key_padding_mask is not None:
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
attn_output_weights = attn_output_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
)
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
attn_output_weights = softmax(
attn_output_weights, dim=-1)
attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training)
attn_output = torch.bmm(attn_output_weights, v)
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
if need_weights:
# average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights.sum(dim=1) / num_heads
else:
return attn_output, None
def _get_valid_embedding(Er, len_q, len_k):
"""
----------
Author: Damon Gwinn
----------
Gets valid embeddings based on max length of RPR attention
----------
"""
len_e = Er.shape[0]
start = max(0, len_e - len_q)
return Er[start:, :]
def _skew(qe):
"""
----------
Author: Damon Gwinn
----------
Performs the skew optimized RPR computation (https://arxiv.org/abs/1809.04281)
----------
"""
sz = qe.shape[1]
mask = (torch.triu(torch.ones(sz, sz).to(qe.device)) == 1).float().flip(0)
qe = mask * qe
qe = F.pad(qe, (1,0, 0,0, 0,0))
qe = torch.reshape(qe, (qe.shape[0], qe.shape[2], qe.shape[1]))
srel = qe[:, 1:, :]
return srel
|