File size: 19,819 Bytes
4e46a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import torch
import torch.nn as nn

from torch.nn import functional as F
from torch.nn.parameter import Parameter
from torch.nn import Module
from torch.nn.modules.transformer import _get_clones
from torch.nn.modules.linear import Linear
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.normalization import LayerNorm
from torch.nn.init import *

from torch.nn.functional import linear, softmax, dropout
from torch.nn import MultiheadAttention
from typing import Optional

class TransformerDecoderRPR(Module):
    def __init__(self, decoder_layer, num_layers, norm=None):
        super(TransformerDecoderRPR, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        
    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None):
        output = tgt
        for mod in self.layers:
            output = mod(output, memory, tgt_mask=tgt_mask,
                         memory_mask=memory_mask,
                         tgt_key_padding_mask=tgt_key_padding_mask,
                         memory_key_padding_mask=memory_key_padding_mask)

        if self.norm is not None:
            output = self.norm(output)

        return output
    
class TransformerDecoderLayerRPR(Module):
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, er_len=None):
        super(TransformerDecoderLayerRPR, self).__init__()
        
        self.self_attn = MultiheadAttentionRPR(d_model, nhead, dropout=dropout, er_len=er_len)
        self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = Linear(d_model, dim_feedforward)
        self.dropout = Dropout(dropout)
        self.linear2 = Linear(dim_feedforward, d_model)

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.norm3 = LayerNorm(d_model)
        self.dropout1 = Dropout(dropout)
        self.dropout2 = Dropout(dropout)
        self.dropout3 = Dropout(dropout)
        
    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
                tgt_key_padding_mask=None, memory_key_padding_mask=None):
        tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)

        tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(F.relu(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt

# TransformerEncoderRPR (only for music transformer)
class TransformerEncoderRPR(Module):
    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoderRPR, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
    def forward(self, src, mask=None, src_key_padding_mask=None):
        output = src
        for i in range(self.num_layers):
            output = self.layers[i](output, src_mask=mask,
                                    src_key_padding_mask=src_key_padding_mask)
        if self.norm:
            output = self.norm(output)
        return output

# TransformerEncoderLayerRPR (only for music transformer)
class TransformerEncoderLayerRPR(Module):
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, er_len=None):
        super(TransformerEncoderLayerRPR, self).__init__()
        self.self_attn = MultiheadAttentionRPR(d_model, nhead, dropout=dropout, er_len=er_len)
        # Implementation of Feedforward model
        self.linear1 = Linear(d_model, dim_feedforward)
        self.dropout = Dropout(dropout)
        self.linear2 = Linear(dim_feedforward, d_model)
        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.dropout1 = Dropout(dropout)
        self.dropout2 = Dropout(dropout)
    def forward(self, src, src_mask=None, src_key_padding_mask=None):
        src2 = self.self_attn(src, src, src, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(F.relu(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

# MultiheadAttentionRPR
class MultiheadAttentionRPR(Module):
    def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, er_len=None):
        super(MultiheadAttentionRPR, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim

        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

        self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))

        if self._qkv_same_embed_dim is False:
            self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
            self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
            self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))

        if bias:
            self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
        else:
            self.register_parameter('in_proj_bias', None)
        self.out_proj = Linear(embed_dim, embed_dim, bias=bias)

        if add_bias_kv:
            self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
            self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
        else:
            self.bias_k = self.bias_v = None

        self.add_zero_attn = add_zero_attn

        # Adding RPR embedding matrix
        if(er_len is not None):
            self.Er = Parameter(torch.rand((er_len, self.head_dim), dtype=torch.float32))
        else:
            self.Er = None

        self._reset_parameters()

    def _reset_parameters(self):
        if self._qkv_same_embed_dim:
            xavier_uniform_(self.in_proj_weight)
        else:
            xavier_uniform_(self.q_proj_weight)
            xavier_uniform_(self.k_proj_weight)
            xavier_uniform_(self.v_proj_weight)

        if self.in_proj_bias is not None:
            constant_(self.in_proj_bias, 0.)
            constant_(self.out_proj.bias, 0.)
        if self.bias_k is not None:
            xavier_normal_(self.bias_k)
        if self.bias_v is not None:
            xavier_normal_(self.bias_v)

    def forward(self, query, key, value, key_padding_mask=None,
                need_weights=True, attn_mask=None):

        if hasattr(self, '_qkv_same_embed_dim') and self._qkv_same_embed_dim is False:

            return multi_head_attention_forward_rpr(
                query, key, value, self.embed_dim, self.num_heads,
                self.in_proj_weight, self.in_proj_bias,
                self.bias_k, self.bias_v, self.add_zero_attn,
                self.dropout, self.out_proj.weight, self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask, need_weights=need_weights,
                attn_mask=attn_mask, use_separate_proj_weight=True,
                q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
                v_proj_weight=self.v_proj_weight, rpr_mat=self.Er)
        else:
            if not hasattr(self, '_qkv_same_embed_dim'):
                warnings.warn('A new version of MultiheadAttention module has been implemented. \
                    Please re-train your model with the new module',
                              UserWarning)

            return multi_head_attention_forward_rpr(
                query, key, value, self.embed_dim, self.num_heads,
                self.in_proj_weight, self.in_proj_bias,
                self.bias_k, self.bias_v, self.add_zero_attn,
                self.dropout, self.out_proj.weight, self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask, need_weights=need_weights,
                attn_mask=attn_mask, rpr_mat=self.Er)

# multi_head_attention_forward_rpr
def multi_head_attention_forward_rpr(query,                       # type: Tensor
                                 key,                             # type: Tensor
                                 value,                           # type: Tensor
                                 embed_dim_to_check,              # type: int
                                 num_heads,                       # type: int
                                 in_proj_weight,                  # type: Tensor
                                 in_proj_bias,                    # type: Tensor
                                 bias_k,                          # type: Optional[Tensor]
                                 bias_v,                          # type: Optional[Tensor]
                                 add_zero_attn,                   # type: bool
                                 dropout_p,                       # type: float
                                 out_proj_weight,                 # type: Tensor
                                 out_proj_bias,                   # type: Tensor
                                 training=True,                   # type: bool
                                 key_padding_mask=None,           # type: Optional[Tensor]
                                 need_weights=True,               # type: bool
                                 attn_mask=None,                  # type: Optional[Tensor]
                                 use_separate_proj_weight=False,  # type: bool
                                 q_proj_weight=None,              # type: Optional[Tensor]
                                 k_proj_weight=None,              # type: Optional[Tensor]
                                 v_proj_weight=None,              # type: Optional[Tensor]
                                 static_k=None,                   # type: Optional[Tensor]
                                 static_v=None,                   # type: Optional[Tensor]
                                 rpr_mat=None
                                 ):
    """
    ----------
    Author: Pytorch
    Modified: Damon Gwinn
    ----------
    For Relative Position Representation support (https://arxiv.org/abs/1803.02155)
    https://pytorch.org/docs/1.2.0/_modules/torch/nn/functional.html
    Modification to take RPR embedding matrix and perform skew optimized RPR (https://arxiv.org/abs/1809.04281)
    ----------
    """
    # type: (...) -> Tuple[Tensor, Optional[Tensor]]

    qkv_same = torch.equal(query, key) and torch.equal(key, value)
    kv_same = torch.equal(key, value)
    
    tgt_len, bsz, embed_dim = query.size()
    assert embed_dim == embed_dim_to_check
    assert list(query.size()) == [tgt_len, bsz, embed_dim]
    assert key.size() == value.size()

    head_dim = embed_dim // num_heads
    assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
    scaling = float(head_dim) ** -0.5

    if use_separate_proj_weight is not True:
        if qkv_same:
            # self-attention
            q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)

        elif kv_same:
            # encoder-decoder attention
            # This is inline in_proj function with in_proj_weight and in_proj_bias
            _b = in_proj_bias
            _start = 0
            _end = embed_dim
            _w = in_proj_weight[_start:_end, :]
            if _b is not None:
                _b = _b[_start:_end]
            q = linear(query, _w, _b)

            if key is None:
                assert value is None
                k = None
                v = None
            else:
                # This is inline in_proj function with in_proj_weight and in_proj_bias
                _b = in_proj_bias
                _start = embed_dim
                _end = None
                _w = in_proj_weight[_start:, :]
                if _b is not None:
                    _b = _b[_start:]
                k, v = linear(key, _w, _b).chunk(2, dim=-1)

        else:
            # This is inline in_proj function with in_proj_weight and in_proj_bias
            _b = in_proj_bias
            _start = 0
            _end = embed_dim
            _w = in_proj_weight[_start:_end, :]
            if _b is not None:
                _b = _b[_start:_end]
            q = linear(query, _w, _b)

            # This is inline in_proj function with in_proj_weight and in_proj_bias
            _b = in_proj_bias
            _start = embed_dim
            _end = embed_dim * 2
            _w = in_proj_weight[_start:_end, :]
            if _b is not None:
                _b = _b[_start:_end]
            k = linear(key, _w, _b)

            # This is inline in_proj function with in_proj_weight and in_proj_bias
            _b = in_proj_bias
            _start = embed_dim * 2
            _end = None
            _w = in_proj_weight[_start:, :]
            if _b is not None:
                _b = _b[_start:]
            v = linear(value, _w, _b)
    else:
        q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
        len1, len2 = q_proj_weight_non_opt.size()
        assert len1 == embed_dim and len2 == query.size(-1)

        k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
        len1, len2 = k_proj_weight_non_opt.size()
        assert len1 == embed_dim and len2 == key.size(-1)

        v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
        len1, len2 = v_proj_weight_non_opt.size()
        assert len1 == embed_dim and len2 == value.size(-1)

        if in_proj_bias is not None:
            q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
            k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
            v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
        else:
            q = linear(query, q_proj_weight_non_opt, in_proj_bias)
            k = linear(key, k_proj_weight_non_opt, in_proj_bias)
            v = linear(value, v_proj_weight_non_opt, in_proj_bias)
    q = q * scaling

    if bias_k is not None and bias_v is not None:
        if static_k is None and static_v is None:
            k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
            v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
            if attn_mask is not None:
                attn_mask = torch.cat([attn_mask,
                                      torch.zeros((attn_mask.size(0), 1),
                                                  dtype=attn_mask.dtype,
                                                  device=attn_mask.device)], dim=1)
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
                                                   dtype=key_padding_mask.dtype,
                                                   device=key_padding_mask.device)], dim=1)
        else:
            assert static_k is None, "bias cannot be added to static key."
            assert static_v is None, "bias cannot be added to static value."
    else:
        assert bias_k is None
        assert bias_v is None

    q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
    if k is not None:
        k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
    if v is not None:
        v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)

    if static_k is not None:
        assert static_k.size(0) == bsz * num_heads
        assert static_k.size(2) == head_dim
        k = static_k

    if static_v is not None:
        assert static_v.size(0) == bsz * num_heads
        assert static_v.size(2) == head_dim
        v = static_v

    src_len = k.size(1)

    if key_padding_mask is not None:
        assert key_padding_mask.size(0) == bsz
        assert key_padding_mask.size(1) == src_len

    if add_zero_attn:
        src_len += 1
        k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
        v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
        if attn_mask is not None:
            attn_mask = torch.cat([attn_mask, torch.zeros((attn_mask.size(0), 1),
                                                          dtype=attn_mask.dtype,
                                                          device=attn_mask.device)], dim=1)
        if key_padding_mask is not None:
            key_padding_mask = torch.cat(
                [key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
                                               dtype=key_padding_mask.dtype,
                                               device=key_padding_mask.device)], dim=1)

    attn_output_weights = torch.bmm(q, k.transpose(1, 2))
    assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]

    ######### ADDITION OF RPR ###########
    if(rpr_mat is not None):
        rpr_mat = _get_valid_embedding(rpr_mat, q.shape[1], k.shape[1])
        qe = torch.einsum("hld,md->hlm", q, rpr_mat)
        srel = _skew(qe)
        attn_output_weights += srel

    if attn_mask is not None:
        attn_mask = attn_mask.unsqueeze(0)
        attn_output_weights += attn_mask

    if key_padding_mask is not None:
        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
        attn_output_weights = attn_output_weights.masked_fill(
            key_padding_mask.unsqueeze(1).unsqueeze(2),
            float('-inf'),
        )
        attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)

    attn_output_weights = softmax(
        attn_output_weights, dim=-1)

    attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training)

    attn_output = torch.bmm(attn_output_weights, v)
    assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
    attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
    attn_output = linear(attn_output, out_proj_weight, out_proj_bias)

    if need_weights:
        # average attention weights over heads
        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
        return attn_output, attn_output_weights.sum(dim=1) / num_heads
    else:
        return attn_output, None

def _get_valid_embedding(Er, len_q, len_k):
    """
    ----------
    Author: Damon Gwinn
    ----------
    Gets valid embeddings based on max length of RPR attention
    ----------
    """

    len_e = Er.shape[0]
    start = max(0, len_e - len_q)
    return Er[start:, :]

def _skew(qe):
    """
    ----------
    Author: Damon Gwinn
    ----------
    Performs the skew optimized RPR computation (https://arxiv.org/abs/1809.04281)
    ----------
    """
    sz = qe.shape[1]
    mask = (torch.triu(torch.ones(sz, sz).to(qe.device)) == 1).float().flip(0)

    qe = mask * qe
    qe = F.pad(qe, (1,0, 0,0, 0,0))
    qe = torch.reshape(qe, (qe.shape[0], qe.shape[2], qe.shape[1]))

    srel = qe[:, 1:, :]
    return srel