Spaces:
Sleeping
Sleeping
import gradio as gr | |
from pathlib import Path | |
import torch | |
import shutil | |
import os | |
import subprocess | |
import cv2 | |
import math | |
import clip | |
import numpy as np | |
from PIL import Image | |
from scenedetect import open_video, SceneManager, split_video_ffmpeg | |
from scenedetect.detectors import ContentDetector, AdaptiveDetector | |
from scenedetect.video_splitter import split_video_ffmpeg | |
from scenedetect.scene_manager import save_images | |
from utilities.constants import * | |
from utilities.chord_to_midi import * | |
from model.video_music_transformer import VideoMusicTransformer | |
from model.video_regression import VideoRegression | |
import json | |
from midi2audio import FluidSynth | |
import moviepy.editor as mp | |
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip | |
import random | |
from moviepy.editor import * | |
import time | |
from tqdm import tqdm | |
from huggingface_hub import snapshot_download | |
from gradio import Markdown | |
all_key_names = ['C major', 'G major', 'D major', 'A major', | |
'E major', 'B major', 'F major', 'Bb major', | |
'Eb major', 'Ab major', 'Db major', 'Gb major', | |
'A minor', 'E minor', 'B minor', 'F# minor', | |
'C# minor', 'G# minor', 'D minor', 'G minor', | |
'C minor', 'F minor', 'Bb minor', 'Eb minor', | |
] | |
traspose_key_dic = { | |
'F major' : -7, | |
'Gb major' : -6, | |
'G major' : -5, | |
'Ab major' : -4, | |
'A major' : -3, | |
'Bb major' : -2, | |
'B major' : -1, | |
'C major' : 0, | |
'Db major' : 1, | |
'D major' : 2, | |
'Eb major' : 3, | |
'E major' : 4, | |
'D minor' : -7, | |
'Eb minor' : -6, | |
'E minor' : -5, | |
'F minor' : -4, | |
'F# minor' : -3, | |
'G minor' : -2, | |
'G# minor' : -1, | |
'A minor' : 0, | |
'Bb minor' : 1, | |
'B minor' : 2, | |
'C minor' : 3, | |
'C# minor' : 4 | |
} | |
flatsharpDic = { | |
'Db':'C#', | |
'Eb':'D#', | |
'Gb':'F#', | |
'Ab':'G#', | |
'Bb':'A#' | |
} | |
max_conseq_N = 0 | |
max_conseq_chord = 2 | |
tempo = 120 | |
duration = 2 | |
min_loudness = 0 # Minimum loudness level in the input range | |
max_loudness = 50 # Maximum loudness level in the input range | |
min_velocity = 49 # Minimum velocity value in the output range | |
max_velocity = 112 # Maximum velocity value in the output range | |
def split_video_into_frames(video, frame_dir): | |
output_path = os.path.join(frame_dir, f"%03d.jpg") | |
cmd = f"ffmpeg -i {video} -vf \"select=bitor(gte(t-prev_selected_t\,1)\,isnan(prev_selected_t))\" -vsync 0 -qmin 1 -q:v 1 {output_path}" | |
subprocess.call(cmd, shell=True) | |
def gen_semantic_feature(frame_dir, semantic_dir): | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
model, preprocess = clip.load("ViT-L/14@336px", device=device) | |
file_names = os.listdir(frame_dir) | |
sorted_file_names = sorted(file_names) | |
output_path = semantic_dir / "semantic.npy" | |
features = torch.cuda.FloatTensor(len(sorted_file_names), 768).fill_(0) | |
for idx, file_name in enumerate(sorted_file_names): | |
fpath = frame_dir / file_name | |
image = preprocess(Image.open(fpath)).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
image_features = model.encode_image(image) | |
features[idx] = image_features[0] | |
features = features.cpu().numpy() | |
np.save(output_path, features) | |
def gen_emotion_feature(frame_dir, emotion_dir): | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
model, preprocess = clip.load("ViT-L/14@336px", device=device) | |
text = clip.tokenize(["exciting", "fearful", "tense", "sad", "relaxing", "neutral"]).to(device) | |
file_names = os.listdir(frame_dir) | |
sorted_file_names = sorted(file_names) | |
output_path = emotion_dir / "emotion.lab" | |
emolist = [] | |
for file_name in sorted_file_names: | |
fpath = frame_dir / file_name | |
image = preprocess(Image.open(fpath)).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
logits_per_image, logits_per_text = model(image, text) | |
probs = logits_per_image.softmax(dim=-1).cpu().numpy() | |
fp1 = format(probs[0][0], ".4f") | |
fp2 = format(probs[0][1], ".4f") | |
fp3 = format(probs[0][2], ".4f") | |
fp4 = format(probs[0][3], ".4f") | |
fp5 = format(probs[0][4], ".4f") | |
fp6 = format(probs[0][5], ".4f") | |
emo_val = str(fp1) +" "+ str(fp2) +" "+ str(fp3) +" "+ str(fp4) +" "+ str(fp5) + " " + str(fp6) | |
emolist.append(emo_val) | |
with open(output_path ,'w' ,encoding = 'utf-8') as f: | |
f.write("time exciting_prob fearful_prob tense_prob sad_prob relaxing_prob neutral_prob\n") | |
for i in range(0, len(emolist) ): | |
f.write(str(i) + " "+emolist[i]+"\n") | |
def gen_scene_feature(video, scene_dir): | |
video_stream = open_video(str(video)) | |
scene_manager = SceneManager() | |
scene_manager.add_detector(AdaptiveDetector()) | |
scene_manager.detect_scenes(video_stream, show_progress=False) | |
scene_list = scene_manager.get_scene_list() | |
sec = 0 | |
scenedict = {} | |
for idx, scene in enumerate(scene_list): | |
end_int = math.ceil(scene[1].get_seconds()) | |
for s in range (sec, end_int): | |
scenedict[s] = str(idx) | |
sec += 1 | |
fpathname = scene_dir / "scene.lab" | |
with open(fpathname,'w',encoding = 'utf-8') as f: | |
for i in range(0, len(scenedict)): | |
f.write(str(i) + " "+scenedict[i]+"\n") | |
def gen_scene_offset_feature(scene_dir, scene_offset_dir): | |
src = scene_dir / "scene.lab" | |
tgt = scene_offset_dir / "scene_offset.lab" | |
id_list = [] | |
with open(src, encoding = 'utf-8') as f: | |
for line in f: | |
line = line.strip() | |
line_arr = line.split(" ") | |
if len(line_arr) == 2 : | |
time = int(line_arr[0]) | |
scene_id = int(line_arr[1]) | |
id_list.append(scene_id) | |
offset_list = [] | |
current_id = id_list[0] | |
offset = 0 | |
for i in range(len(id_list)): | |
if id_list[i] != current_id: | |
current_id = id_list[i] | |
offset = 0 | |
offset_list.append(offset) | |
offset += 1 | |
with open(tgt,'w',encoding = 'utf-8') as f: | |
for i in range(0, len(offset_list)): | |
f.write(str(i) + " " + str(offset_list[i]) + "\n") | |
def gen_motion_feature(video, motion_dir): | |
cap = cv2.VideoCapture(str(video)) | |
prev_frame = None | |
prev_time = 0 | |
motion_value = 0 | |
motiondict = {} | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
curr_time = cap.get(cv2.CAP_PROP_POS_MSEC) / 1000.0 | |
motiondict[0] = "0.0000" | |
if prev_frame is not None and curr_time - prev_time >= 1: | |
diff = cv2.absdiff(frame, prev_frame) | |
diff_rgb = cv2.cvtColor(diff, cv2.COLOR_BGR2RGB) | |
motion_value = diff_rgb.mean() | |
motion_value = format(motion_value, ".4f") | |
motiondict[int(curr_time)] = str(motion_value) | |
prev_time = int(curr_time) | |
prev_frame = frame.copy() | |
cap.release() | |
cv2.destroyAllWindows() | |
fpathname = motion_dir / "motion.lab" | |
with open(fpathname,'w',encoding = 'utf-8') as f: | |
for i in range(0, len(motiondict)): | |
f.write(str(i) + " "+motiondict[i]+"\n") | |
# def get_motion_feature(scene_dir, scene_offset_dir): | |
# fpath_emotion = emotion_dir / "emotion.lab" | |
# fpath_motion = motion_dir / "motion.lab" | |
def get_scene_offset_feature(scene_offset_dir, max_seq_chord=300, max_seq_video=300): | |
feature_scene_offset = np.empty(max_seq_video) | |
feature_scene_offset.fill(SCENE_OFFSET_PAD) | |
fpath_scene_offset = scene_offset_dir / "scene_offset.lab" | |
with open(fpath_scene_offset, encoding = 'utf-8') as f: | |
for line in f: | |
line = line.strip() | |
line_arr = line.split(" ") | |
time = line_arr[0] | |
time = int(time) | |
if time >= max_seq_chord: | |
break | |
sceneID = line_arr[1] | |
feature_scene_offset[time] = int(sceneID)+1 | |
feature_scene_offset = torch.from_numpy(feature_scene_offset) | |
feature_scene_offset = feature_scene_offset.to(torch.float32) | |
return feature_scene_offset | |
def get_motion_feature(motion_dir, max_seq_chord=300, max_seq_video=300): | |
fpath_motion = motion_dir / "motion.lab" | |
feature_motion = np.empty(max_seq_video) | |
feature_motion.fill(MOTION_PAD) | |
with open(fpath_motion, encoding = 'utf-8') as f: | |
for line in f: | |
line = line.strip() | |
line_arr = line.split(" ") | |
time = line_arr[0] | |
time = int(time) | |
if time >= max_seq_chord: | |
break | |
motion = line_arr[1] | |
feature_motion[time] = float(motion) | |
feature_motion = torch.from_numpy(feature_motion) | |
feature_motion = feature_motion.to(torch.float32) | |
return feature_motion | |
def get_emotion_feature(emotion_dir, max_seq_chord=300, max_seq_video=300): | |
fpath_emotion = emotion_dir / "emotion.lab" | |
feature_emotion = np.empty((max_seq_video, 6)) | |
feature_emotion.fill(EMOTION_PAD) | |
with open(fpath_emotion, encoding = 'utf-8') as f: | |
for line in f: | |
line = line.strip() | |
line_arr = line.split(" ") | |
if line_arr[0] == "time": | |
continue | |
time = line_arr[0] | |
time = int(time) | |
if time >= max_seq_chord: | |
break | |
emo1, emo2, emo3, emo4, emo5, emo6 = \ | |
line_arr[1],line_arr[2],line_arr[3],line_arr[4],line_arr[5],line_arr[6] | |
emoList = [ float(emo1), float(emo2), float(emo3), float(emo4), float(emo5), float(emo6) ] | |
emoList = np.array(emoList) | |
feature_emotion[time] = emoList | |
feature_emotion = torch.from_numpy(feature_emotion) | |
feature_emotion = feature_emotion.to(torch.float32) | |
return feature_emotion | |
def get_semantic_feature(semantic_dir, max_seq_chord=300, max_seq_video=300): | |
fpath_semantic = semantic_dir / "semantic.npy" | |
video_feature = np.load(fpath_semantic) | |
dim_vf = video_feature.shape[1] | |
video_feature_tensor = torch.from_numpy( video_feature ) | |
feature_semantic = torch.full((max_seq_video, dim_vf,), SEMANTIC_PAD , dtype=torch.float32, device=torch.device("cpu")) | |
if(video_feature_tensor.shape[0] < max_seq_video): | |
feature_semantic[:video_feature_tensor.shape[0]] = video_feature_tensor | |
else: | |
feature_semantic = video_feature_tensor[:max_seq_video] | |
return feature_semantic | |
def text_clip(text: str, duration: int, start_time: int = 0): | |
t = TextClip(text, font='Georgia-Regular', fontsize=24, color='white') | |
t = t.set_position(("center", 20)).set_duration(duration) | |
t = t.set_start(start_time) | |
return t | |
def convert_format_id_to_offset(id_list): | |
offset_list = [] | |
current_id = id_list[0] | |
offset = 0 | |
for i in range(len(id_list)): | |
if id_list[i] != current_id: | |
current_id = id_list[i] | |
offset = 0 | |
offset_list.append(offset) | |
offset += 1 | |
return offset_list | |
class Video2music: | |
def __init__( | |
self, | |
name="amaai-lab/video2music", | |
device="cuda:0", | |
cache_dir=None, | |
local_files_only=False, | |
): | |
# path = snapshot_download(repo_id=name, cache_dir=cache_dir) | |
self.device = device | |
# self.model.device = device | |
# self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# f"{path}/beats/microsoft-deberta-v3-large.pt" | |
# self.model_weights = f"{path}/saved_models/AMT/best_loss_weights.pickle" | |
# self.modelReg_weights = f"{path}/saved_models/AMT/best_rmse_weights.pickle" | |
self.model_weights = "saved_models/AMT/best_loss_weights.pickle" | |
self.modelReg_weights = "saved_models/AMT/best_rmse_weights.pickle" | |
self.total_vf_dim = 776 | |
# 768 (sem) + 1 (mo) + 1 (scene) + 6 (emo) | |
self.max_seq_video = 300 | |
self.max_seq_chord = 300 | |
self.model = VideoMusicTransformer(n_layers=6, num_heads=8, | |
d_model=512, dim_feedforward=1024, | |
max_sequence_midi=2048, max_sequence_video=300, | |
max_sequence_chord=300, total_vf_dim=self.total_vf_dim, rpr=RPR).to(device) | |
self.model.load_state_dict(torch.load(self.model_weights, map_location=device)) | |
self.modelReg = VideoRegression(max_sequence_video=300, total_vf_dim=self.total_vf_dim, regModel= "bigru").to(device) | |
self.modelReg.load_state_dict(torch.load(self.modelReg_weights, map_location=device)) | |
self.model.eval() | |
self.modelReg.eval() | |
self.SF2_FILE = "default_sound_font.sf2" | |
def generate(self, video, primer, key): | |
feature_dir = Path("./feature") | |
output_dir = Path("./output") | |
if feature_dir.exists(): | |
shutil.rmtree(str(feature_dir)) | |
if output_dir.exists(): | |
shutil.rmtree(str(output_dir)) | |
feature_dir.mkdir(parents=True) | |
output_dir.mkdir(parents=True) | |
frame_dir = feature_dir / "vevo_frame" | |
#video features | |
semantic_dir = feature_dir / "vevo_semantic" | |
emotion_dir = feature_dir / "vevo_emotion" | |
scene_dir = feature_dir / "vevo_scene" | |
scene_offset_dir = feature_dir / "vevo_scene_offset" | |
motion_dir = feature_dir / "vevo_motion" | |
frame_dir.mkdir(parents=True) | |
semantic_dir.mkdir(parents=True) | |
emotion_dir.mkdir(parents=True) | |
scene_dir.mkdir(parents=True) | |
scene_offset_dir.mkdir(parents=True) | |
motion_dir.mkdir(parents=True) | |
#music features | |
chord_dir = feature_dir / "vevo_chord" | |
loudness_dir = feature_dir / "vevo_loudness" | |
note_density_dir = feature_dir / "vevo_note_density" | |
chord_dir.mkdir(parents=True) | |
loudness_dir.mkdir(parents=True) | |
note_density_dir.mkdir(parents=True) | |
split_video_into_frames(video, frame_dir) | |
gen_semantic_feature(frame_dir, semantic_dir) | |
gen_emotion_feature(frame_dir, emotion_dir) | |
gen_scene_feature(video, scene_dir) | |
gen_scene_offset_feature(scene_dir, scene_offset_dir) | |
gen_motion_feature(video, motion_dir) | |
feature_scene_offset = get_scene_offset_feature(scene_offset_dir) | |
feature_motion = get_motion_feature(motion_dir) | |
feature_emotion = get_emotion_feature(emotion_dir) | |
feature_semantic = get_semantic_feature(semantic_dir) | |
# cuda | |
feature_scene_offset = feature_scene_offset.to(self.device) | |
feature_motion = feature_motion.to(self.device) | |
feature_emotion = feature_emotion.to(self.device) | |
feature_scene_offset = feature_scene_offset.unsqueeze(0) | |
feature_motion = feature_motion.unsqueeze(0) | |
feature_emotion = feature_emotion.unsqueeze(0) | |
feature_semantic = feature_semantic.to(self.device) | |
feature_semantic_list = [] | |
feature_semantic = torch.unsqueeze(feature_semantic, 0) | |
feature_semantic_list.append( feature_semantic.to(self.device) ) | |
#feature_semantic_list.append( feature_semantic ) | |
if "major" in key: | |
feature_key = torch.tensor([0]) | |
feature_key = feature_key.float() | |
elif "minor" in key: | |
feature_key = torch.tensor([1]) | |
feature_key = feature_key.float() | |
feature_key = feature_key.to(self.device) | |
with open('dataset/vevo_meta/chord.json') as json_file: | |
chordDic = json.load(json_file) | |
with open('dataset/vevo_meta/chord_inv.json') as json_file: | |
chordInvDic = json.load(json_file) | |
with open('dataset/vevo_meta/chord_root.json') as json_file: | |
chordRootDic = json.load(json_file) | |
with open('dataset/vevo_meta/chord_attr.json') as json_file: | |
chordAttrDic = json.load(json_file) | |
if primer.strip() == "": | |
if "major" in key: | |
primer = "C" | |
else: | |
primer = "Am" | |
pChordList = primer.split(" ") | |
primerCID = [] | |
primerCID_root = [] | |
primerCID_attr = [] | |
for pChord in pChordList: | |
if len(pChord) > 1: | |
if pChord[1] == "b": | |
pChord = flatsharpDic [ pChord[0:2] ] + pChord[2:] | |
type_idx = 0 | |
if pChord[1] == "#": | |
pChord = pChord[0:2] + ":" + pChord[2:] | |
type_idx = 2 | |
else: | |
pChord = pChord[0:1] + ":" + pChord[1:] | |
type_idx = 1 | |
if pChord[type_idx+1:] == "m": | |
pChord = pChord[0:type_idx] + ":min" | |
if pChord[type_idx+1:] == "m6": | |
pChord = pChord[0:type_idx] + ":min6" | |
if pChord[type_idx+1:] == "m7": | |
pChord = pChord[0:type_idx] + ":min7" | |
if pChord[type_idx+1:] == "M6": | |
pChord = pChord[0:type_idx] + ":maj6" | |
if pChord[type_idx+1:] == "M7": | |
pChord = pChord[0:type_idx] + ":maj7" | |
if pChord[type_idx+1:] == "": | |
pChord = pChord[0:type_idx] | |
chordID = chordDic[pChord] | |
primerCID.append(chordID) | |
chord_arr = pChord.split(":") | |
if len(chord_arr) == 1: | |
chordRootID = chordRootDic[chord_arr[0]] | |
primerCID_root.append(chordRootID) | |
primerCID_attr.append(0) | |
elif len(chord_arr) == 2: | |
chordRootID = chordRootDic[chord_arr[0]] | |
chordAttrID = chordAttrDic[chord_arr[1]] | |
primerCID_root.append(chordRootID) | |
primerCID_attr.append(chordAttrID) | |
primerCID = np.array(primerCID) | |
primerCID = torch.from_numpy(primerCID) | |
primerCID = primerCID.to(torch.long) | |
primerCID = primerCID.to(self.device) | |
primerCID_root = np.array(primerCID_root) | |
primerCID_root = torch.from_numpy(primerCID_root) | |
primerCID_root = primerCID_root.to(torch.long) | |
primerCID_root = primerCID_root.to(self.device) | |
primerCID_attr = np.array(primerCID_attr) | |
primerCID_attr = torch.from_numpy(primerCID_attr) | |
primerCID_attr = primerCID_attr.to(torch.long) | |
primerCID_attr = primerCID_attr.to(self.device) | |
# self.model.eval() | |
# self.modelReg.eval() | |
with torch.set_grad_enabled(False): | |
rand_seq = self.model.generate(feature_semantic_list=feature_semantic_list, | |
feature_key=feature_key, | |
feature_scene_offset=feature_scene_offset, | |
feature_motion=feature_motion, | |
feature_emotion=feature_emotion, | |
primer = primerCID, | |
primer_root = primerCID_root, | |
primer_attr = primerCID_attr, | |
target_seq_length = 300, | |
beam=0, | |
max_conseq_N= max_conseq_N, | |
max_conseq_chord = max_conseq_chord) | |
y = self.modelReg( | |
feature_semantic_list, | |
feature_scene_offset, | |
feature_motion, | |
feature_emotion) | |
y = y.reshape(y.shape[0] * y.shape[1], -1) | |
y_note_density, y_loudness = torch.split(y, split_size_or_sections=1, dim=1) | |
y_note_density_np = y_note_density.cpu().numpy() | |
y_note_density_np = np.round(y_note_density_np).astype(int) | |
y_note_density_np = np.clip(y_note_density_np, 0, 40) | |
y_loudness_np = y_loudness.cpu().numpy() | |
y_loudness_np_lv = (y_loudness_np * 100).astype(int) | |
y_loudness_np_lv = np.clip(y_loudness_np_lv, 0, 50) | |
velolistExp = [] | |
exponent = 0.3 | |
for item in y_loudness_np_lv: | |
loudness = item[0] | |
velocity_exp = np.round(((loudness - min_loudness) / (max_loudness - min_loudness)) ** exponent * (max_velocity - min_velocity) + min_velocity) | |
velocity_exp = int(velocity_exp) | |
velolistExp.append(velocity_exp) | |
densitylist = [] | |
for item in y_loudness_np_lv: | |
density = item[0] | |
if density <= 6: | |
densitylist.append(0) | |
elif density <= 12: | |
densitylist.append(1) | |
elif density <= 18: | |
densitylist.append(2) | |
elif density <= 24: | |
densitylist.append(3) | |
else: | |
densitylist.append(4) | |
# generated ChordID to ChordSymbol | |
chord_genlist = [] | |
chordID_genlist= rand_seq[0].cpu().numpy() | |
for i in chordID_genlist: | |
chord_genlist.append(chordInvDic[str(i)]) | |
chord_offsetlist = convert_format_id_to_offset(chord_genlist) | |
f_path_midi = output_dir / "output.mid" | |
f_path_flac = output_dir / "output.flac" | |
f_path_video_out = output_dir / "output.mp4" | |
# ChordSymbol to MIDI file with voicing | |
MIDI = MIDIFile(1) | |
MIDI.addTempo(0, 0, tempo) | |
midi_chords_orginal = [] | |
for i, k in enumerate(chord_genlist): | |
k = k.replace(":", "") | |
if k == "N": | |
midi_chords_orginal.append([]) | |
else: | |
midi_chords_orginal.append(Chord(k).getMIDI("c", 4)) | |
midi_chords = voice(midi_chords_orginal) | |
trans = traspose_key_dic[key] | |
for i, chord in enumerate(midi_chords): | |
if densitylist[i] == 0: | |
if len(chord) >= 4: | |
if chord_offsetlist[i] % 2 == 0: | |
MIDI.addNote(0, 0, chord[0]+trans, i * duration + 0 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 1 , duration, velolistExp[i]) | |
else: | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 0 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[3]+trans, i * duration + 1 , duration, velolistExp[i]) | |
elif densitylist[i] == 1: | |
if len(chord) >= 4: | |
if chord_offsetlist[i] % 2 == 0: | |
MIDI.addNote(0, 0, chord[0]+trans, i * duration + 0 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0.5 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 1 , duration, velolistExp[i]) | |
else: | |
MIDI.addNote(0, 0, chord[3]+trans, i * duration + 0 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0.5 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 1 , duration, velolistExp[i]) | |
elif densitylist[i] == 2: | |
if len(chord) >= 4: | |
if chord_offsetlist[i] % 2 == 0: | |
MIDI.addNote(0, 0, chord[0]+trans, i * duration + 0 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0.5 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 1 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[3]+trans, i * duration + 1.5 , duration, velolistExp[i]) | |
else: | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 0 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0.5 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 1 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[3]+trans, i * duration + 1.5 , duration, velolistExp[i]) | |
elif densitylist[i] == 3: | |
if len(chord) >= 4: | |
if chord_offsetlist[i] % 2 == 0: | |
MIDI.addNote(0, 0, chord[0]+trans, i * duration + 0 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0.25 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 0.5 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0.75 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[3]+trans, i * duration + 1 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 1.5 , duration, velolistExp[i]) | |
else: | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[0]+trans, i * duration + 0.25 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0.5 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 0.75 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[3]+trans, i * duration + 1 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 1.5 , duration, velolistExp[i]) | |
elif densitylist[i] == 4: | |
if len(chord) >= 4: | |
if chord_offsetlist[i] % 2 == 0: | |
MIDI.addNote(0, 0, chord[0]+trans, i * duration + 0 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0.25 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 0.5 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0.75 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[3]+trans, i * duration + 1 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 1.25 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 1.5 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 1.75 , duration, velolistExp[i]) | |
else: | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[0]+trans, i * duration + 0.25 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 0.5 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 0.75 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[3]+trans, i * duration + 1 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 1.25 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[1]+trans, i * duration + 1.5 , duration, velolistExp[i]) | |
MIDI.addNote(0, 0, chord[2]+trans, i * duration + 1.75 , duration, velolistExp[i]) | |
with open(f_path_midi, "wb") as outputFile: | |
MIDI.writeFile(outputFile) | |
# Convert midi to audio (e.g., flac) | |
fs = FluidSynth(sound_font=self.SF2_FILE) | |
fs.midi_to_audio(str(f_path_midi), str(f_path_flac)) | |
# Render generated music into input video | |
audio_mp = mp.AudioFileClip(str(f_path_flac)) | |
video_mp = mp.VideoFileClip(str(video)) | |
audio_mp = audio_mp.subclip(0, video_mp.duration ) | |
final = video_mp.set_audio(audio_mp) | |
final.write_videofile(str(f_path_video_out), | |
codec='libx264', | |
audio_codec='aac', | |
temp_audiofile='temp-audio.m4a', | |
remove_temp=True | |
) | |
return Path(str(f_path_video_out)) | |
# Initialize Mustango | |
if torch.cuda.is_available(): | |
video2music = Video2music() | |
else: | |
video2music = Video2music(device="cpu") | |
def gradio_generate(input_video, input_primer, input_key): | |
output_filename = video2music.generate(input_video, input_primer, input_key) | |
return str(output_filename) | |
title="Video2Music: Suitable Music Generation from Videos using an Affective Multimodal Transformer model" | |
description_text = """ | |
<p> | |
Generate background music using Video2Music by providing an input video. | |
<br/><br/> This is the demo for Video2Music: Suitable Music Generation from Videos using an Affective Multimodal Transformer model | |
<a href="https://arxiv.org/abs/2311.00968">Read our paper.</a> | |
<p/> | |
""" | |
input_video = gr.Video(label="Input Video") | |
input_primer = gr.Textbox(label="Input Primer", value="C Am F G") | |
input_key = gr.Dropdown(choices=["C major", "A minor"], value="C major", label="Input Key") | |
output_video = gr.Video(label="Output Video") | |
css = ''' | |
#duplicate-button { | |
margin: auto; | |
color: white; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
''' | |
# Gradio interface | |
gr_interface = gr.Interface( | |
fn=gradio_generate, | |
inputs=[input_video, input_primer, input_key ], | |
outputs=[output_video], | |
description=description_text, | |
allow_flagging='never', | |
cache_examples=True, | |
) | |
# with gr.Blocks() as demo: | |
with gr.Blocks(css=css) as demo: | |
title=gr.HTML(f"<h1><center>{title}</center></h1>") | |
gr_interface.render() | |
#demo.queue() | |
# demo.launch(debug=True) | |
demo.queue().launch() | |