File size: 9,624 Bytes
3c815b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e510030
3c815b1
 
 
 
 
 
 
e510030
3c815b1
 
 
 
 
 
e510030
3c815b1
 
 
 
 
 
e510030
3c815b1
 
 
 
 
 
 
e510030
3c815b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e510030
3c815b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import numpy as np
import pandas as pd
import streamlit as st
import json
import torch
from streamlit_option_menu import option_menu
import time
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from streamlit_lottie import st_lottie
from streamlit_lottie import st_lottie_spinner
import speech_recognition as s 




with st.sidebar:
    selected = option_menu(
        menu_title="Main Menu",
        options=["Home","Information"]
    )

   ################# Animation of the title
                    
st.markdown(
    """
<style>
.sidebar{
    background-image: linear-gradient(#2e7bcf,#2e7bcf);
    color: white;
}
</style>
""",
    unsafe_allow_html=True,
)



st.markdown(
        f"""
        <style>
        .stApp {{
            background-image: url("https://img.freepik.com/free-vector/seamless-gold-rhombus-grid-pattern-black-background_53876-97589.jpg?w=1060&t=st=1671168593~exp=1671169193~hmac=34116cdbd09587f0c6d4c289e5b48129239d316204877b7f5191f0c6e50d715d");
            background-attachment: fixed;
            background-size: cover
        }}
        </style>
        """,
        unsafe_allow_html=True
    )


if selected == "Home":

        col1,col2,col3,col4,col5,col6,col7,col8 = st.columns(8)




        def load_lottiefile(filepath: str):
            with open(filepath, "r") as f:
                return json.load(f)


        Tbr = load_lottiefile("t.json")
        with col1:
            st_lottie(Tbr,
            loop=True,
            speed=0.28,
            key="hello")


        Obr = load_lottiefile("o.json")
        with col2:
            st_lottie(Obr,
            speed=0.28,
            key="O")


        Xbr = load_lottiefile("x.json")
        with col3:
            st_lottie(Xbr,
            speed=0.28,
            key="X")


        Ibr = load_lottiefile("i.json")
        with col4:
            st_lottie(Ibr,
            speed=0.28,
            key="I")



        Cbr = load_lottiefile("c.json")
        with col5:
            st_lottie(Cbr,
            speed=0.28,
            key="C") 


        with col6:
            st_lottie(Ibr,
            speed=0.28,
            key="II")


        with col7:
            st_lottie(Tbr,
            speed=0.28,
            key="TT")


        Ybr = load_lottiefile("y.json")
        with col8:
            st_lottie(Ybr,
            speed=0.28,
            key="Y")





        ########################END OF ANIMATIONS



        st.markdown(f'<h1 style="color:#00ddb3;font-size:40px;border:2px solid white;margin-bottom:10px; text-align:center">{"Analysis of Text/Speech"}</h1>', unsafe_allow_html=True)

        tokenizer = AutoTokenizer.from_pretrained('unitary/toxic-bert')
        model = AutoModelForSequenceClassification.from_pretrained('unitary/toxic-bert')

        labels=('Toxic','Severe Toxic','Obscene/Sexual','Threat/Violent','Insulting','Identity Hate')

        st.markdown(f'<h1 style="color:#febf00;font-size:30px; text-shadow: 2px 2px 4px #ff0000; text-transform: uppercase;line-height: 1;">{"👉 Input Method"}</h1>', unsafe_allow_html=True)

        t1= st.radio("",
        ('Text','Speech'))

        st.markdown(
            """
            <style>
                .stProgress > div > div > div > div {
                    background-image: linear-gradient(to right, #5fde , #00cc42);
                }
            </style>""",
            unsafe_allow_html=True,
        )

        bar  = st.progress(0)
        
        if t1 == "Text":

                st.markdown(f'<h1 style="color:#febf00; text-shadow: 2px 2px 2px #ff0000;font-size:25px;">{"Enter Text : "}</h1>', unsafe_allow_html=True)

                text = st.text_area("👇")
                if st.button("Done"):
                    with st.spinner("Analysing Toxicity of the Text"):
                            time.sleep(1.5)
                            tokens = tokenizer.encode(text, return_tensors='pt', max_length=512, truncation=True)  
                            
                            result = model(tokens)    
                                
                            toxic_array=[]
                            
                            for i in range(6):
                                toxic_array.append((labels[i],round(float(result.logits[0][i]),3)))
                                bar.progress(50)
                                bar.progress(100) 
                                
                            max_= max(toxic_array[1:5], key= lambda tup:tup[1])
                            st.success("Result", icon="✅")
                            
                            if ((toxic_array[0][1]<=0) and (max_[1]<0)):
                                st.markdown(f'<h1 style="color:#00e500;text-shadow:1px 1px 1px orange;font-size:25px;">{"Not Toxic"}</h1>', unsafe_allow_html=True)

                            else:
                                st.markdown(f'<h1 style="color:#EC2001;text-shadow:1px 1px #36024c;font-size:30px;">⭕{max_[0]}</h1>', unsafe_allow_html=True)


                                count=0
                                for i in range(1,6):
                                    if toxic_array[i][1]>0:
                                        count+=1
                                if count>1:
                                    st.markdown(f'<h1 style="color:#febf00;font-size:28px;">{"Other Toxicity:"}</h1>', unsafe_allow_html=True)

                                    for i in range(1,6):
                                        if (toxic_array[i][1]>0) and (toxic_array[i]!=max_):
                                            st.markdown(f'<h1 style="color:#EC2001;text-shadow:1px 1px #36024c;font-size:25px;">⭕{toxic_array[i][0]}</h1>', unsafe_allow_html=True)




        else:
            st.markdown(f'<h1 style="color:#febf00;text-shadow: 2px 2px 3px #ff0000;font-size:23px;">{"🤏 Click on the Mic to Record"}</h1>', unsafe_allow_html=True)


            if st.button("🎙️"):

                sr=s.Recognizer()
                with s.Microphone() as m:
                    st.markdown(f'<h1 style="color:white; margin-bottom:5px;font-size:25px;">{"Speak Now..."}</h1>', unsafe_allow_html=True)

             
                    audio=sr.listen(m)
                    query=sr.recognize_google(audio,language='eng-in')
                    #st.image(query)
                    st.markdown(f'<h1 style="color:black;margin-bottom:7px;border-radius:10px;background-color:orange;padding:10px;border:2px solid white;font-size:20px;">{query}</h1>', unsafe_allow_html=True)

                    tokens = tokenizer.encode(query, return_tensors='pt', max_length=512, truncation=True)  
                    result = model(tokens)                             
                    toxic_array=[]
                    with st.spinner("Analysing Toxicity of the Text"):
                            time.sleep(1.5)                       
                            for i in range(6):
                                toxic_array.append((labels[i],round(float(result.logits[0][i]),3)))
                                bar.progress(50)
                                bar.progress(100)                    
                            max_= max(toxic_array[1:5], key= lambda tup:tup[1])
                            st.success('Result', icon="✅")

                            if ((toxic_array[0][1]<=0) and (max_[1]<0)):
                                                st.markdown(f'<h1 style="color:#00e500;font-size:25px;">{"Not Toxic"}</h1>', unsafe_allow_html=True)
                                                
                            else:
                                    st.markdown(f'<h1 style="color:#ffff;font-size:30px;">⭕{max_[0]}</h1>', unsafe_allow_html=True)
                                    count=0
                                    for i in range(1,6):
                                        if toxic_array[i][1]>0:
                                                count+=1
                                    if count>1:
                                        st.markdown(f'<h1 style="color:#EC2001;font-size:28px;">{"Other Toxicity:"}</h1>', unsafe_allow_html=True)

                                        for i in range(1,6):
                                            if (toxic_array[i][1]>0) and (toxic_array[i]!=max_):
                                                        st.markdown(f'<h1 style="color:#ffff;font-size:25px;">⭕{toxic_array[i][0]}</h1>', unsafe_allow_html=True)




if selected == "Information":
    st.markdown(f'<h1 style="color:#ffff;text-shadow:4px 4px 4px black; text-align:center;font-size:32px;">{"This Application uses BERT Model for Analysing Toxicity of Text/Speech"}</h1>', unsafe_allow_html=True)
       
    st.markdown(f'<h1 style="color:#febf00;margin-top:5rem;text-shadow:4px 4px 4px black; text-align:center;font-size:27px;">{"Made by :"}</h1>', unsafe_allow_html=True)
 
    st.markdown(f'<h1 style="color:#ffff;margin-top:0.3rem;text-shadow:4px 4px 4px black;text-align:center;font-size:25px;">{"🪶Aman Kaintura"}</h1>', unsafe_allow_html=True)
    st.markdown(f'<h1 style="color:#ffff;margin-top:1rem;text-shadow:4px 4px 4px black; text-align:center;font-size:25px;">{"🪶Yuvraj Chakravarty"}</h1>', unsafe_allow_html=True)
    st.markdown(f'<h1 style="color:#ffff;margin-top:1rem;text-shadow:4px 4px 4px black; text-align:center;font-size:25px;">{"🪶Bharat Kumar"}</h1>', unsafe_allow_html=True)

                                        


st.markdown("""
<style>
.css-1lsmgbg.egzxvld0
{
visibility: hidden;
}
</style>
""",unsafe_allow_html=True)