Spaces:
Sleeping
Sleeping
File size: 1,375 Bytes
adc5ef7 f5cd85c adc5ef7 f5cd85c adc5ef7 69431fe f5cd85c 69431fe adc5ef7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import streamlit as st
from transformers import pipeline
from PIL import Image
checkpoint = "openai/clip-vit-large-patch14"
classifier = pipeline(model=checkpoint, task="zero-shot-image-classification")
def get_best_label(predictions):
max_score = 0
label = None
for p in predictions:
if p['score'] > max_score:
max_score = p['score']
label = str(p['label'])
return label, max_score
st.markdown('<h1 style="color:black;">Document Classifier</h1>', unsafe_allow_html=True)
st.markdown('<h2 style="color:gray;">This model can classify input image to the following categories:</h2>', unsafe_allow_html=True)
st.markdown('<h3 style="color:gray;"> <ul> <li>Invoice</li> <li>Bank statement</li> <li>Credit bureau</li> </ul> </h3>', unsafe_allow_html=True)
upload= st.file_uploader('Insert image for classification', type=['png','jpg'])
c1, c2= st.columns(2)
if upload is not None:
image = Image.open(upload)
c1.header('Input Image')
c1.image(image)
print("c1", c1)
print("c2", c2)
c2.header('Output')
predictions = classifier(image, candidate_labels=["invoice, receipt", "bank statement, financial statement", "credit report"])
label, score = get_best_label(predictions)
c2.subheader('Predicted class: ' + str(label) + " with score: " + str(score))
c2.subheader('Probabilites:')
c2.write(str(predictions))
|