import streamlit as st from transformers import pipeline from PIL import Image checkpoint = "openai/clip-vit-large-patch14" classifier = pipeline(model=checkpoint, task="zero-shot-image-classification") def get_best_label(predictions): max_score = 0 label = None for p in predictions: if p['score'] > max_score: max_score = p['score'] label = str(p['label']) return label, max_score st.markdown('

Document Classifier

', unsafe_allow_html=True) st.markdown('

This model can classify input image to the following categories:

', unsafe_allow_html=True) st.markdown('

', unsafe_allow_html=True) upload= st.file_uploader('Insert image for classification', type=['png','jpg']) c1, c2= st.columns(2) if upload is not None: image = Image.open(upload) c1.header('Input Image') c1.image(image) print("c1", c1) print("c2", c2) c2.header('Output') predictions = classifier(image, candidate_labels=["invoice, receipt", "bank statement, financial statement", "credit report"]) label, score = get_best_label(predictions) c2.subheader('Predicted class: ' + str(label) + " with score: " + str(score)) c2.subheader('Probabilites:') c2.write(str(predictions))