File size: 5,359 Bytes
b4d6f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
""" Activation Factory
Hacked together by / Copyright 2020 Ross Wightman
"""
from typing import Union, Callable, Type

from .activations import *
from .activations_jit import *
from .activations_me import *
from .config import is_exportable, is_scriptable, is_no_jit

# PyTorch has an optimized, native 'silu' (aka 'swish') operator as of PyTorch 1.7.
# Also hardsigmoid, hardswish, and soon mish. This code will use native version if present.
# Eventually, the custom SiLU, Mish, Hard*, layers will be removed and only native variants will be used.
_has_silu = 'silu' in dir(torch.nn.functional)
_has_hardswish = 'hardswish' in dir(torch.nn.functional)
_has_hardsigmoid = 'hardsigmoid' in dir(torch.nn.functional)
_has_mish = 'mish' in dir(torch.nn.functional)


_ACT_FN_DEFAULT = dict(
    silu=F.silu if _has_silu else swish,
    swish=F.silu if _has_silu else swish,
    mish=F.mish if _has_mish else mish,
    relu=F.relu,
    relu6=F.relu6,
    leaky_relu=F.leaky_relu,
    elu=F.elu,
    celu=F.celu,
    selu=F.selu,
    gelu=gelu,
    sigmoid=sigmoid,
    tanh=tanh,
    hard_sigmoid=F.hardsigmoid if _has_hardsigmoid else hard_sigmoid,
    hard_swish=F.hardswish if _has_hardswish else hard_swish,
    hard_mish=hard_mish,
)

_ACT_FN_JIT = dict(
    silu=F.silu if _has_silu else swish_jit,
    swish=F.silu if _has_silu else swish_jit,
    mish=F.mish if _has_mish else mish_jit,
    hard_sigmoid=F.hardsigmoid if _has_hardsigmoid else hard_sigmoid_jit,
    hard_swish=F.hardswish if _has_hardswish else hard_swish_jit,
    hard_mish=hard_mish_jit
)

_ACT_FN_ME = dict(
    silu=F.silu if _has_silu else swish_me,
    swish=F.silu if _has_silu else swish_me,
    mish=F.mish if _has_mish else mish_me,
    hard_sigmoid=F.hardsigmoid if _has_hardsigmoid else hard_sigmoid_me,
    hard_swish=F.hardswish if _has_hardswish else hard_swish_me,
    hard_mish=hard_mish_me,
)

_ACT_FNS = (_ACT_FN_ME, _ACT_FN_JIT, _ACT_FN_DEFAULT)
for a in _ACT_FNS:
    a.setdefault('hardsigmoid', a.get('hard_sigmoid'))
    a.setdefault('hardswish', a.get('hard_swish'))


_ACT_LAYER_DEFAULT = dict(
    silu=nn.SiLU if _has_silu else Swish,
    swish=nn.SiLU if _has_silu else Swish,
    mish=nn.Mish if _has_mish else Mish,
    relu=nn.ReLU,
    relu6=nn.ReLU6,
    leaky_relu=nn.LeakyReLU,
    elu=nn.ELU,
    prelu=PReLU,
    celu=nn.CELU,
    selu=nn.SELU,
    gelu=GELU,
    sigmoid=Sigmoid,
    tanh=Tanh,
    hard_sigmoid=nn.Hardsigmoid if _has_hardsigmoid else HardSigmoid,
    hard_swish=nn.Hardswish if _has_hardswish else HardSwish,
    hard_mish=HardMish,
)

_ACT_LAYER_JIT = dict(
    silu=nn.SiLU if _has_silu else SwishJit,
    swish=nn.SiLU if _has_silu else SwishJit,
    mish=nn.Mish if _has_mish else MishJit,
    hard_sigmoid=nn.Hardsigmoid if _has_hardsigmoid else HardSigmoidJit,
    hard_swish=nn.Hardswish if _has_hardswish else HardSwishJit,
    hard_mish=HardMishJit
)

_ACT_LAYER_ME = dict(
    silu=nn.SiLU if _has_silu else SwishMe,
    swish=nn.SiLU if _has_silu else SwishMe,
    mish=nn.Mish if _has_mish else MishMe,
    hard_sigmoid=nn.Hardsigmoid if _has_hardsigmoid else HardSigmoidMe,
    hard_swish=nn.Hardswish if _has_hardswish else HardSwishMe,
    hard_mish=HardMishMe,
)

_ACT_LAYERS = (_ACT_LAYER_ME, _ACT_LAYER_JIT, _ACT_LAYER_DEFAULT)
for a in _ACT_LAYERS:
    a.setdefault('hardsigmoid', a.get('hard_sigmoid'))
    a.setdefault('hardswish', a.get('hard_swish'))


def get_act_fn(name: Union[Callable, str] = 'relu'):
    """ Activation Function Factory
    Fetching activation fns by name with this function allows export or torch script friendly
    functions to be returned dynamically based on current config.
    """
    if not name:
        return None
    if isinstance(name, Callable):
        return name
    if not (is_no_jit() or is_exportable() or is_scriptable()):
        # If not exporting or scripting the model, first look for a memory-efficient version with
        # custom autograd, then fallback
        if name in _ACT_FN_ME:
            return _ACT_FN_ME[name]
    if is_exportable() and name in ('silu', 'swish'):
        # FIXME PyTorch SiLU doesn't ONNX export, this is a temp hack
        return swish
    if not (is_no_jit() or is_exportable()):
        if name in _ACT_FN_JIT:
            return _ACT_FN_JIT[name]
    return _ACT_FN_DEFAULT[name]


def get_act_layer(name: Union[Type[nn.Module], str] = 'relu'):
    """ Activation Layer Factory
    Fetching activation layers by name with this function allows export or torch script friendly
    functions to be returned dynamically based on current config.
    """
    if not name:
        return None
    if isinstance(name, type):
        return name
    if not (is_no_jit() or is_exportable() or is_scriptable()):
        if name in _ACT_LAYER_ME:
            return _ACT_LAYER_ME[name]
    if is_exportable() and name in ('silu', 'swish'):
        # FIXME PyTorch SiLU doesn't ONNX export, this is a temp hack
        return Swish
    if not (is_no_jit() or is_exportable()):
        if name in _ACT_LAYER_JIT:
            return _ACT_LAYER_JIT[name]
    return _ACT_LAYER_DEFAULT[name]


def create_act_layer(name: Union[nn.Module, str], inplace=None, **kwargs):
    act_layer = get_act_layer(name)
    if act_layer is None:
        return None
    return act_layer(**kwargs) if inplace is None else act_layer(inplace=inplace, **kwargs)