File size: 1,817 Bytes
b4d6f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
""" PyTorch Involution Layer

Official impl: https://github.com/d-li14/involution/blob/main/cls/mmcls/models/utils/involution_naive.py
Paper: `Involution: Inverting the Inherence of Convolution for Visual Recognition` - https://arxiv.org/abs/2103.06255
"""
import torch.nn as nn
from .conv_bn_act import ConvBnAct
from .create_conv2d import create_conv2d


class Involution(nn.Module):

    def __init__(
            self,
            channels,
            kernel_size=3,
            stride=1,
            group_size=16,
            rd_ratio=4,
            norm_layer=nn.BatchNorm2d,
            act_layer=nn.ReLU,
    ):
        super(Involution, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.channels = channels
        self.group_size = group_size
        self.groups = self.channels // self.group_size
        self.conv1 = ConvBnAct(
            in_channels=channels,
            out_channels=channels // rd_ratio,
            kernel_size=1,
            norm_layer=norm_layer,
            act_layer=act_layer)
        self.conv2 = self.conv = create_conv2d(
            in_channels=channels // rd_ratio,
            out_channels=kernel_size**2 * self.groups,
            kernel_size=1,
            stride=1)
        self.avgpool = nn.AvgPool2d(stride, stride) if stride == 2 else nn.Identity()
        self.unfold = nn.Unfold(kernel_size, 1, (kernel_size-1)//2, stride)

    def forward(self, x):
        weight = self.conv2(self.conv1(self.avgpool(x)))
        B, C, H, W = weight.shape
        KK = int(self.kernel_size ** 2)
        weight = weight.view(B, self.groups, KK, H, W).unsqueeze(2)
        out = self.unfold(x).view(B, self.groups, self.group_size, KK, H, W)
        out = (weight * out).sum(dim=3).view(B, self.channels, H, W)
        return out