Spaces:
Sleeping
Sleeping
""" Gather-Excite Attention Block | |
Paper: `Gather-Excite: Exploiting Feature Context in CNNs` - https://arxiv.org/abs/1810.12348 | |
Official code here, but it's only partial impl in Caffe: https://github.com/hujie-frank/GENet | |
I've tried to support all of the extent both w/ and w/o params. I don't believe I've seen another | |
impl that covers all of the cases. | |
NOTE: extent=0 + extra_params=False is equivalent to Squeeze-and-Excitation | |
Hacked together by / Copyright 2021 Ross Wightman | |
""" | |
import math | |
from torch import nn as nn | |
import torch.nn.functional as F | |
from .create_act import create_act_layer, get_act_layer | |
from .create_conv2d import create_conv2d | |
from .helpers import make_divisible | |
from .mlp import ConvMlp | |
class GatherExcite(nn.Module): | |
""" Gather-Excite Attention Module | |
""" | |
def __init__( | |
self, channels, feat_size=None, extra_params=False, extent=0, use_mlp=True, | |
rd_ratio=1./16, rd_channels=None, rd_divisor=1, add_maxpool=False, | |
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, gate_layer='sigmoid'): | |
super(GatherExcite, self).__init__() | |
self.add_maxpool = add_maxpool | |
act_layer = get_act_layer(act_layer) | |
self.extent = extent | |
if extra_params: | |
self.gather = nn.Sequential() | |
if extent == 0: | |
assert feat_size is not None, 'spatial feature size must be specified for global extent w/ params' | |
self.gather.add_module( | |
'conv1', create_conv2d(channels, channels, kernel_size=feat_size, stride=1, depthwise=True)) | |
if norm_layer: | |
self.gather.add_module(f'norm1', nn.BatchNorm2d(channels)) | |
else: | |
assert extent % 2 == 0 | |
num_conv = int(math.log2(extent)) | |
for i in range(num_conv): | |
self.gather.add_module( | |
f'conv{i + 1}', | |
create_conv2d(channels, channels, kernel_size=3, stride=2, depthwise=True)) | |
if norm_layer: | |
self.gather.add_module(f'norm{i + 1}', nn.BatchNorm2d(channels)) | |
if i != num_conv - 1: | |
self.gather.add_module(f'act{i + 1}', act_layer(inplace=True)) | |
else: | |
self.gather = None | |
if self.extent == 0: | |
self.gk = 0 | |
self.gs = 0 | |
else: | |
assert extent % 2 == 0 | |
self.gk = self.extent * 2 - 1 | |
self.gs = self.extent | |
if not rd_channels: | |
rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) | |
self.mlp = ConvMlp(channels, rd_channels, act_layer=act_layer) if use_mlp else nn.Identity() | |
self.gate = create_act_layer(gate_layer) | |
def forward(self, x): | |
size = x.shape[-2:] | |
if self.gather is not None: | |
x_ge = self.gather(x) | |
else: | |
if self.extent == 0: | |
# global extent | |
x_ge = x.mean(dim=(2, 3), keepdims=True) | |
if self.add_maxpool: | |
# experimental codepath, may remove or change | |
x_ge = 0.5 * x_ge + 0.5 * x.amax((2, 3), keepdim=True) | |
else: | |
x_ge = F.avg_pool2d( | |
x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2, count_include_pad=False) | |
if self.add_maxpool: | |
# experimental codepath, may remove or change | |
x_ge = 0.5 * x_ge + 0.5 * F.max_pool2d(x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2) | |
x_ge = self.mlp(x_ge) | |
if x_ge.shape[-1] != 1 or x_ge.shape[-2] != 1: | |
x_ge = F.interpolate(x_ge, size=size) | |
return x * self.gate(x_ge) | |