Spaces:
Sleeping
Sleeping
""" Normalization layers and wrappers | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class GroupNorm(nn.GroupNorm): | |
def __init__(self, num_channels, num_groups, eps=1e-5, affine=True): | |
# NOTE num_channels is swapped to first arg for consistency in swapping norm layers with BN | |
super().__init__(num_groups, num_channels, eps=eps, affine=affine) | |
def forward(self, x): | |
return F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) | |
class LayerNorm2d(nn.LayerNorm): | |
""" Layernorm for channels of '2d' spatial BCHW tensors """ | |
def __init__(self, num_channels): | |
super().__init__([num_channels, 1, 1]) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |