demo / model /layers /norm.py
amazinghaha's picture
Upload 106 files
b4d6f1e verified
raw
history blame
828 Bytes
""" Normalization layers and wrappers
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
class GroupNorm(nn.GroupNorm):
def __init__(self, num_channels, num_groups, eps=1e-5, affine=True):
# NOTE num_channels is swapped to first arg for consistency in swapping norm layers with BN
super().__init__(num_groups, num_channels, eps=eps, affine=affine)
def forward(self, x):
return F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps)
class LayerNorm2d(nn.LayerNorm):
""" Layernorm for channels of '2d' spatial BCHW tensors """
def __init__(self, num_channels):
super().__init__([num_channels, 1, 1])
def forward(self, x: torch.Tensor) -> torch.Tensor:
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)