Spaces:
Sleeping
Sleeping
""" Depthwise Separable Conv Modules | |
Basic DWS convs. Other variations of DWS exist with batch norm or activations between the | |
DW and PW convs such as the Depthwise modules in MobileNetV2 / EfficientNet and Xception. | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
from torch import nn as nn | |
from .create_conv2d import create_conv2d | |
from .create_norm_act import convert_norm_act | |
class SeparableConvBnAct(nn.Module): | |
""" Separable Conv w/ trailing Norm and Activation | |
""" | |
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False, | |
channel_multiplier=1.0, pw_kernel_size=1, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, | |
apply_act=True, drop_block=None): | |
super(SeparableConvBnAct, self).__init__() | |
self.conv_dw = create_conv2d( | |
in_channels, int(in_channels * channel_multiplier), kernel_size, | |
stride=stride, dilation=dilation, padding=padding, depthwise=True) | |
self.conv_pw = create_conv2d( | |
int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias) | |
norm_act_layer = convert_norm_act(norm_layer, act_layer) | |
self.bn = norm_act_layer(out_channels, apply_act=apply_act, drop_block=drop_block) | |
def in_channels(self): | |
return self.conv_dw.in_channels | |
def out_channels(self): | |
return self.conv_pw.out_channels | |
def forward(self, x): | |
x = self.conv_dw(x) | |
x = self.conv_pw(x) | |
if self.bn is not None: | |
x = self.bn(x) | |
return x | |
class SeparableConv2d(nn.Module): | |
""" Separable Conv | |
""" | |
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False, | |
channel_multiplier=1.0, pw_kernel_size=1): | |
super(SeparableConv2d, self).__init__() | |
self.conv_dw = create_conv2d( | |
in_channels, int(in_channels * channel_multiplier), kernel_size, | |
stride=stride, dilation=dilation, padding=padding, depthwise=True) | |
self.conv_pw = create_conv2d( | |
int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias) | |
def in_channels(self): | |
return self.conv_dw.in_channels | |
def out_channels(self): | |
return self.conv_pw.out_channels | |
def forward(self, x): | |
x = self.conv_dw(x) | |
x = self.conv_pw(x) | |
return x | |