Spaces:
Sleeping
Sleeping
""" Squeeze-and-Excitation Channel Attention | |
An SE implementation originally based on PyTorch SE-Net impl. | |
Has since evolved with additional functionality / configuration. | |
Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507 | |
Also included is Effective Squeeze-Excitation (ESE). | |
Paper: `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 | |
Hacked together by / Copyright 2021 Ross Wightman | |
""" | |
from torch import nn as nn | |
from .create_act import create_act_layer | |
from .helpers import make_divisible | |
class SEModule(nn.Module): | |
""" SE Module as defined in original SE-Nets with a few additions | |
Additions include: | |
* divisor can be specified to keep channels % div == 0 (default: 8) | |
* reduction channels can be specified directly by arg (if rd_channels is set) | |
* reduction channels can be specified by float rd_ratio (default: 1/16) | |
* global max pooling can be added to the squeeze aggregation | |
* customizable activation, normalization, and gate layer | |
""" | |
def __init__( | |
self, channels, rd_ratio=1. / 16, rd_channels=None, rd_divisor=8, add_maxpool=False, | |
act_layer=nn.ReLU, norm_layer=None, gate_layer='sigmoid'): | |
super(SEModule, self).__init__() | |
self.add_maxpool = add_maxpool | |
if not rd_channels: | |
rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) | |
self.fc1 = nn.Conv2d(channels, rd_channels, kernel_size=1, bias=True) | |
self.bn = norm_layer(rd_channels) if norm_layer else nn.Identity() | |
self.act = create_act_layer(act_layer, inplace=True) | |
self.fc2 = nn.Conv2d(rd_channels, channels, kernel_size=1, bias=True) | |
self.gate = create_act_layer(gate_layer) | |
def forward(self, x): | |
x_se = x.mean((2, 3), keepdim=True) | |
if self.add_maxpool: | |
# experimental codepath, may remove or change | |
x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True) | |
x_se = self.fc1(x_se) | |
x_se = self.act(self.bn(x_se)) | |
x_se = self.fc2(x_se) | |
return x * self.gate(x_se) | |
SqueezeExcite = SEModule # alias | |
class EffectiveSEModule(nn.Module): | |
""" 'Effective Squeeze-Excitation | |
From `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 | |
""" | |
def __init__(self, channels, add_maxpool=False, gate_layer='hard_sigmoid', **_): | |
super(EffectiveSEModule, self).__init__() | |
self.add_maxpool = add_maxpool | |
self.fc = nn.Conv2d(channels, channels, kernel_size=1, padding=0) | |
self.gate = create_act_layer(gate_layer) | |
def forward(self, x): | |
x_se = x.mean((2, 3), keepdim=True) | |
if self.add_maxpool: | |
# experimental codepath, may remove or change | |
x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True) | |
x_se = self.fc(x_se) | |
return x * self.gate(x_se) | |
EffectiveSqueezeExcite = EffectiveSEModule # alias | |