demo / model /layers /test_time_pool.py
amazinghaha's picture
Upload 106 files
b4d6f1e verified
raw
history blame
2 kB
""" Test Time Pooling (Average-Max Pool)
Hacked together by / Copyright 2020 Ross Wightman
"""
import logging
from torch import nn
import torch.nn.functional as F
from .adaptive_avgmax_pool import adaptive_avgmax_pool2d
_logger = logging.getLogger(__name__)
class TestTimePoolHead(nn.Module):
def __init__(self, base, original_pool=7):
super(TestTimePoolHead, self).__init__()
self.base = base
self.original_pool = original_pool
base_fc = self.base.get_classifier()
if isinstance(base_fc, nn.Conv2d):
self.fc = base_fc
else:
self.fc = nn.Conv2d(
self.base.num_features, self.base.num_classes, kernel_size=1, bias=True)
self.fc.weight.data.copy_(base_fc.weight.data.view(self.fc.weight.size()))
self.fc.bias.data.copy_(base_fc.bias.data.view(self.fc.bias.size()))
self.base.reset_classifier(0) # delete original fc layer
def forward(self, x):
x = self.base.forward_features(x)
x = F.avg_pool2d(x, kernel_size=self.original_pool, stride=1)
x = self.fc(x)
x = adaptive_avgmax_pool2d(x, 1)
return x.view(x.size(0), -1)
def apply_test_time_pool(model, config, use_test_size=True):
test_time_pool = False
if not hasattr(model, 'default_cfg') or not model.default_cfg:
return model, False
if use_test_size and 'test_input_size' in model.default_cfg:
df_input_size = model.default_cfg['test_input_size']
else:
df_input_size = model.default_cfg['input_size']
if config['input_size'][-1] > df_input_size[-1] and config['input_size'][-2] > df_input_size[-2]:
_logger.info('Target input size %s > pretrained default %s, using test time pooling' %
(str(config['input_size'][-2:]), str(df_input_size[-2:])))
model = TestTimePoolHead(model, original_pool=model.default_cfg['pool_size'])
test_time_pool = True
return model, test_time_pool