Spaces:
Sleeping
Sleeping
amazinghaha
commited on
Commit
·
a6116c3
1
Parent(s):
88cd70c
Upload resnet_gn.py
Browse files- resnet_gn.py +375 -0
resnet_gn.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import math
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
'ResNet', 'resnet10', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
|
10 |
+
'resnet152', 'resnet200'
|
11 |
+
]
|
12 |
+
|
13 |
+
class FilterResponseNormNd(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, ndim, num_features, eps=1e-6,
|
16 |
+
learnable_eps=False):
|
17 |
+
"""
|
18 |
+
Input Variables:
|
19 |
+
----------------
|
20 |
+
ndim: An integer indicating the number of dimensions of the expected input tensor.
|
21 |
+
num_features: An integer indicating the number of input feature dimensions.
|
22 |
+
eps: A scalar constant or learnable variable.
|
23 |
+
learnable_eps: A bool value indicating whether the eps is learnable.
|
24 |
+
"""
|
25 |
+
assert ndim in [3, 4, 5], \
|
26 |
+
'FilterResponseNorm only supports 3d, 4d or 5d inputs.'
|
27 |
+
super(FilterResponseNormNd, self).__init__()
|
28 |
+
shape = (1, num_features) + (1,) * (ndim - 2)
|
29 |
+
self.eps = nn.Parameter(torch.ones(*shape) * eps)
|
30 |
+
if not learnable_eps:
|
31 |
+
self.eps.requires_grad_(False)
|
32 |
+
self.gamma = nn.Parameter(torch.Tensor(*shape))
|
33 |
+
self.beta = nn.Parameter(torch.Tensor(*shape))
|
34 |
+
self.tau = nn.Parameter(torch.Tensor(*shape))
|
35 |
+
self.reset_parameters()
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
avg_dims = tuple(range(2, x.dim())) # (2, 3)
|
39 |
+
nu2 = torch.pow(x, 2).mean(dim=avg_dims, keepdim=True)
|
40 |
+
x = x * torch.rsqrt(nu2 + torch.abs(self.eps))
|
41 |
+
return torch.max(self.gamma * x + self.beta, self.tau)
|
42 |
+
|
43 |
+
def reset_parameters(self):
|
44 |
+
nn.init.ones_(self.gamma)
|
45 |
+
nn.init.zeros_(self.beta)
|
46 |
+
nn.init.zeros_(self.tau)
|
47 |
+
|
48 |
+
def conv3x3x3(in_planes, out_planes, stride=1):
|
49 |
+
# 3x3x3 convolution with padding
|
50 |
+
return nn.Conv3d(
|
51 |
+
in_planes,
|
52 |
+
out_planes,
|
53 |
+
kernel_size=3,
|
54 |
+
stride=stride,
|
55 |
+
padding=1,
|
56 |
+
bias=False)
|
57 |
+
|
58 |
+
|
59 |
+
def downsample_basic_block(x, planes, stride):
|
60 |
+
out = F.avg_pool3d(x, kernel_size=1, stride=stride)
|
61 |
+
zero_pads = torch.Tensor(
|
62 |
+
out.size(0), planes - out.size(1), out.size(2), out.size(3),
|
63 |
+
out.size(4)).zero_()
|
64 |
+
if isinstance(out.data, torch.cuda.FloatTensor):
|
65 |
+
zero_pads = zero_pads.cuda()
|
66 |
+
|
67 |
+
out = Variable(torch.cat([out.data, zero_pads], dim=1))
|
68 |
+
|
69 |
+
return out
|
70 |
+
|
71 |
+
|
72 |
+
class BasicBlock(nn.Module):
|
73 |
+
expansion = 1
|
74 |
+
|
75 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
76 |
+
super(BasicBlock, self).__init__()
|
77 |
+
self.conv1 = conv3x3x3(inplanes, planes, stride)
|
78 |
+
self.gn1 = nn.GroupNorm(32,planes)
|
79 |
+
#self.bn1 = nn.BatchNorm3d(planes)
|
80 |
+
self.relu = nn.ReLU(inplace=True)
|
81 |
+
self.conv2 = conv3x3x3(planes, planes)
|
82 |
+
#self.bn2 = nn.BatchNorm3d(planes)
|
83 |
+
self.gn2 = nn.GroupNorm(32,planes)
|
84 |
+
self.downsample = downsample
|
85 |
+
self.stride = stride
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
residual = x
|
89 |
+
|
90 |
+
out = self.conv1(x)
|
91 |
+
#out = self.bn1(out)
|
92 |
+
out = self.gn1(out)
|
93 |
+
out = self.relu(out)
|
94 |
+
|
95 |
+
out = self.conv2(out)
|
96 |
+
#out = self.bn2(out)
|
97 |
+
out = self.gn2(out)
|
98 |
+
|
99 |
+
if self.downsample is not None:
|
100 |
+
residual = self.downsample(x)
|
101 |
+
|
102 |
+
out += residual
|
103 |
+
out = self.relu(out)
|
104 |
+
|
105 |
+
return out
|
106 |
+
|
107 |
+
|
108 |
+
class Bottleneck(nn.Module):
|
109 |
+
expansion = 4
|
110 |
+
|
111 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
112 |
+
super(Bottleneck, self).__init__()
|
113 |
+
self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False)
|
114 |
+
#self.bn1 = nn.BatchNorm3d(planes)
|
115 |
+
self.gn1 = nn.GroupNorm(32,planes)
|
116 |
+
self.conv2 = nn.Conv3d(
|
117 |
+
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
118 |
+
#self.bn2 = nn.BatchNorm3d(planes)
|
119 |
+
self.gn2 = nn.GroupNorm(32,planes)
|
120 |
+
self.conv3 = nn.Conv3d(planes, planes * 4, kernel_size=1, bias=False)
|
121 |
+
#self.bn3 = nn.BatchNorm3d(planes * 4)
|
122 |
+
self.gn3 = nn.GroupNorm(32,planes*4)
|
123 |
+
self.relu = nn.ReLU(inplace=True)
|
124 |
+
self.downsample = downsample
|
125 |
+
self.stride = stride
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
residual = x
|
129 |
+
|
130 |
+
out = self.conv1(x)
|
131 |
+
#out = self.bn1(out)
|
132 |
+
out = self.gn1(out)
|
133 |
+
out = self.relu(out)
|
134 |
+
|
135 |
+
out = self.conv2(out)
|
136 |
+
#out = self.bn2(out)
|
137 |
+
out = self.gn2(out)
|
138 |
+
out = self.relu(out)
|
139 |
+
|
140 |
+
out = self.conv3(out)
|
141 |
+
#out = self.bn3(out)
|
142 |
+
out = self.gn3(out)
|
143 |
+
if self.downsample is not None:
|
144 |
+
residual = self.downsample(x)
|
145 |
+
|
146 |
+
out += residual
|
147 |
+
out = self.relu(out)
|
148 |
+
|
149 |
+
return out
|
150 |
+
|
151 |
+
class MLP(nn.Module):
|
152 |
+
def __init__(
|
153 |
+
self,
|
154 |
+
input_dim: int,
|
155 |
+
hidden_dim: int,
|
156 |
+
output_dim: int,
|
157 |
+
num_layers: int,
|
158 |
+
sigmoid_output: bool = False,
|
159 |
+
) -> None:
|
160 |
+
super().__init__()
|
161 |
+
self.num_layers = num_layers
|
162 |
+
h = [hidden_dim] * (num_layers - 1)
|
163 |
+
self.layers = nn.ModuleList(
|
164 |
+
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
165 |
+
)
|
166 |
+
self.sigmoid_output = sigmoid_output
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
for i, layer in enumerate(self.layers):
|
170 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
171 |
+
if self.sigmoid_output:
|
172 |
+
x = F.sigmoid(x)
|
173 |
+
return x
|
174 |
+
|
175 |
+
class ResNet(nn.Module):
|
176 |
+
|
177 |
+
def __init__(self,
|
178 |
+
block,
|
179 |
+
layers,
|
180 |
+
sample_size,
|
181 |
+
sample_duration,
|
182 |
+
shortcut_type='B',
|
183 |
+
num_classes=400):
|
184 |
+
self.num_classes = num_classes
|
185 |
+
self.inplanes = 64
|
186 |
+
super(ResNet, self).__init__()
|
187 |
+
self.conv1 = nn.Conv3d(
|
188 |
+
1,
|
189 |
+
64,
|
190 |
+
kernel_size=7,
|
191 |
+
stride=(1, 2, 2),
|
192 |
+
padding=(3, 3, 3),
|
193 |
+
bias=False)
|
194 |
+
#self.bn1 = nn.BatchNorm3d(64)
|
195 |
+
self.gn1 = nn.GroupNorm(32,64)
|
196 |
+
self.relu = nn.ReLU(inplace=True)
|
197 |
+
self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
|
198 |
+
self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type)
|
199 |
+
self.layer2 = self._make_layer(
|
200 |
+
block, 128, layers[1], shortcut_type, stride=2)
|
201 |
+
self.layer3 = self._make_layer(
|
202 |
+
block, 256, layers[2], shortcut_type, stride=2)
|
203 |
+
self.layer4 = self._make_layer(
|
204 |
+
block, 512, layers[3], shortcut_type, stride=2)
|
205 |
+
last_duration = int(math.ceil(sample_duration / 16))
|
206 |
+
last_size = int(math.ceil(sample_size / 32))
|
207 |
+
self.avgpool = nn.AvgPool3d(
|
208 |
+
(last_duration, last_size, last_size), stride=1)
|
209 |
+
# self.avgpool = nn.AvgPool3d(
|
210 |
+
# (4, 2, 2), stride=1)
|
211 |
+
#self.fc = nn.Linear(81920, num_classes)
|
212 |
+
self.classfily = MLP(81920, 256, self.num_classes, 2, sigmoid_output=False)
|
213 |
+
|
214 |
+
# for m in self.modules():
|
215 |
+
# if isinstance(m, nn.Conv3d):
|
216 |
+
# m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out')
|
217 |
+
# elif isinstance(m, nn.BatchNorm3d):
|
218 |
+
# m.weight.data.fill_(1)
|
219 |
+
# m.bias.data.zero_()
|
220 |
+
for m in self.modules():
|
221 |
+
if isinstance(m, nn.Conv3d):
|
222 |
+
m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out')
|
223 |
+
elif isinstance(m, nn.GroupNorm):
|
224 |
+
m.weight.data.fill_(1)
|
225 |
+
m.bias.data.zero_()
|
226 |
+
|
227 |
+
|
228 |
+
def _make_layer(self, block, planes, blocks, shortcut_type, stride=1):
|
229 |
+
downsample = None
|
230 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
231 |
+
if shortcut_type == 'A':
|
232 |
+
downsample = partial(
|
233 |
+
downsample_basic_block,
|
234 |
+
planes=planes * block.expansion,
|
235 |
+
stride=stride)
|
236 |
+
else:
|
237 |
+
downsample = nn.Sequential(
|
238 |
+
nn.Conv3d(
|
239 |
+
self.inplanes,
|
240 |
+
planes * block.expansion,
|
241 |
+
kernel_size=1,
|
242 |
+
stride=stride,
|
243 |
+
bias=False), nn.GroupNorm(32,planes * block.expansion))
|
244 |
+
# downsample = nn.Sequential(
|
245 |
+
# nn.Conv3d(
|
246 |
+
# self.inplanes,
|
247 |
+
# planes * block.expansion,
|
248 |
+
# kernel_size=1,
|
249 |
+
# stride=stride,
|
250 |
+
# bias=False), nn.BatchNorm3d(planes * block.expansion))
|
251 |
+
|
252 |
+
|
253 |
+
layers = []
|
254 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
255 |
+
self.inplanes = planes * block.expansion
|
256 |
+
for i in range(1, blocks):
|
257 |
+
layers.append(block(self.inplanes, planes))
|
258 |
+
|
259 |
+
return nn.Sequential(*layers)
|
260 |
+
|
261 |
+
|
262 |
+
def forward(self, x):
|
263 |
+
x = self.conv1(x)
|
264 |
+
#x = self.bn1(x)
|
265 |
+
x = self.gn1(x)
|
266 |
+
x = self.relu(x)
|
267 |
+
x = self.maxpool(x)
|
268 |
+
|
269 |
+
x = self.layer1(x)
|
270 |
+
x = self.layer2(x)
|
271 |
+
x = self.layer3(x)
|
272 |
+
x = self.layer4(x)
|
273 |
+
|
274 |
+
x = self.avgpool(x)
|
275 |
+
|
276 |
+
x = x.view(x.size(0), -1)
|
277 |
+
#x = self.fc(x)
|
278 |
+
self.feature = x
|
279 |
+
x = self.classfily(x)
|
280 |
+
if self.num_classes==1:
|
281 |
+
x = F.sigmoid(x)
|
282 |
+
return x
|
283 |
+
|
284 |
+
|
285 |
+
# def initialize_weights(self):
|
286 |
+
# # print(self.modules())
|
287 |
+
#
|
288 |
+
# for m in self.modules():
|
289 |
+
# if isinstance(m, nn.Linear):
|
290 |
+
# # print(m.weight.data.type())
|
291 |
+
# # input()
|
292 |
+
# # m.weight.data.fill_(1.0)
|
293 |
+
# nn.init.kaiming_normal_(m.weight,a=0, mode='fan_in', nonlinearity='relu')
|
294 |
+
# print(m.weight)
|
295 |
+
|
296 |
+
def weights_init(m):
|
297 |
+
classname = m.__class__.__name__
|
298 |
+
if classname.find('Conv2d') != -1:
|
299 |
+
nn.init.xavier_normal_(m.weight.data)
|
300 |
+
nn.init.constant_(m.bias.data, 0.0)
|
301 |
+
elif classname.find('Linear') != -1:
|
302 |
+
nn.init.xavier_normal_(m.weight)
|
303 |
+
nn.init.constant_(m.bias, 0.0)
|
304 |
+
|
305 |
+
def get_fine_tuning_parameters(model, ft_begin_index):
|
306 |
+
if ft_begin_index == 0:
|
307 |
+
return model.parameters()
|
308 |
+
|
309 |
+
ft_module_names = []
|
310 |
+
for i in range(ft_begin_index, 5):
|
311 |
+
ft_module_names.append('layer{}'.format(i))
|
312 |
+
ft_module_names.append('fc')
|
313 |
+
|
314 |
+
parameters = []
|
315 |
+
for k, v in model.named_parameters():
|
316 |
+
for ft_module in ft_module_names:
|
317 |
+
if ft_module in k:
|
318 |
+
parameters.append({'params': v})
|
319 |
+
break
|
320 |
+
else:
|
321 |
+
parameters.append({'params': v, 'lr': 0.0})
|
322 |
+
|
323 |
+
return parameters
|
324 |
+
|
325 |
+
|
326 |
+
def resnet10(**kwargs):
|
327 |
+
"""Constructs a ResNet-18 model.
|
328 |
+
"""
|
329 |
+
model = ResNet(BasicBlock, [1, 1, 1, 1], **kwargs)
|
330 |
+
return model
|
331 |
+
|
332 |
+
|
333 |
+
def resnet18(**kwargs):
|
334 |
+
"""Constructs a ResNet-18 model.
|
335 |
+
"""
|
336 |
+
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
|
337 |
+
return model
|
338 |
+
|
339 |
+
|
340 |
+
def resnet34(**kwargs):
|
341 |
+
"""Constructs a ResNet-34 model.
|
342 |
+
"""
|
343 |
+
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
344 |
+
return model
|
345 |
+
|
346 |
+
|
347 |
+
def resnet50(**kwargs):
|
348 |
+
"""Constructs a ResNet-50 model.
|
349 |
+
"""
|
350 |
+
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
|
351 |
+
#model.apply(weights_init)
|
352 |
+
return model
|
353 |
+
|
354 |
+
|
355 |
+
def resnet101(**kwargs):
|
356 |
+
"""Constructs a ResNet-101 model.
|
357 |
+
"""
|
358 |
+
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
|
359 |
+
# model.apply(weights_init)
|
360 |
+
return model
|
361 |
+
|
362 |
+
|
363 |
+
def resnet152(**kwargs):
|
364 |
+
"""Constructs a ResNet-101 model.
|
365 |
+
"""
|
366 |
+
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
|
367 |
+
return model
|
368 |
+
|
369 |
+
|
370 |
+
def resnet200(**kwargs):
|
371 |
+
"""Constructs a ResNet-101 model.
|
372 |
+
"""
|
373 |
+
model = ResNet(Bottleneck, [3, 24, 36, 3], **kwargs)
|
374 |
+
# model.apply(weights_init)
|
375 |
+
return model
|