import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import math from functools import partial __all__ = [ 'ResNet', 'resnet10', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnet200' ] class FilterResponseNormNd(nn.Module): def __init__(self, ndim, num_features, eps=1e-6, learnable_eps=False): """ Input Variables: ---------------- ndim: An integer indicating the number of dimensions of the expected input tensor. num_features: An integer indicating the number of input feature dimensions. eps: A scalar constant or learnable variable. learnable_eps: A bool value indicating whether the eps is learnable. """ assert ndim in [3, 4, 5], \ 'FilterResponseNorm only supports 3d, 4d or 5d inputs.' super(FilterResponseNormNd, self).__init__() shape = (1, num_features) + (1,) * (ndim - 2) self.eps = nn.Parameter(torch.ones(*shape) * eps) if not learnable_eps: self.eps.requires_grad_(False) self.gamma = nn.Parameter(torch.Tensor(*shape)) self.beta = nn.Parameter(torch.Tensor(*shape)) self.tau = nn.Parameter(torch.Tensor(*shape)) self.reset_parameters() def forward(self, x): avg_dims = tuple(range(2, x.dim())) # (2, 3) nu2 = torch.pow(x, 2).mean(dim=avg_dims, keepdim=True) x = x * torch.rsqrt(nu2 + torch.abs(self.eps)) return torch.max(self.gamma * x + self.beta, self.tau) def reset_parameters(self): nn.init.ones_(self.gamma) nn.init.zeros_(self.beta) nn.init.zeros_(self.tau) def conv3x3x3(in_planes, out_planes, stride=1): # 3x3x3 convolution with padding return nn.Conv3d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def downsample_basic_block(x, planes, stride): out = F.avg_pool3d(x, kernel_size=1, stride=stride) zero_pads = torch.Tensor( out.size(0), planes - out.size(1), out.size(2), out.size(3), out.size(4)).zero_() if isinstance(out.data, torch.cuda.FloatTensor): zero_pads = zero_pads.cuda() out = Variable(torch.cat([out.data, zero_pads], dim=1)) return out class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3x3(inplanes, planes, stride) self.gn1 = nn.GroupNorm(32,planes) #self.bn1 = nn.BatchNorm3d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3x3(planes, planes) #self.bn2 = nn.BatchNorm3d(planes) self.gn2 = nn.GroupNorm(32,planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) #out = self.bn1(out) out = self.gn1(out) out = self.relu(out) out = self.conv2(out) #out = self.bn2(out) out = self.gn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False) #self.bn1 = nn.BatchNorm3d(planes) self.gn1 = nn.GroupNorm(32,planes) self.conv2 = nn.Conv3d( planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) #self.bn2 = nn.BatchNorm3d(planes) self.gn2 = nn.GroupNorm(32,planes) self.conv3 = nn.Conv3d(planes, planes * 4, kernel_size=1, bias=False) #self.bn3 = nn.BatchNorm3d(planes * 4) self.gn3 = nn.GroupNorm(32,planes*4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) #out = self.bn1(out) out = self.gn1(out) out = self.relu(out) out = self.conv2(out) #out = self.bn2(out) out = self.gn2(out) out = self.relu(out) out = self.conv3(out) #out = self.bn3(out) out = self.gn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class MLP(nn.Module): def __init__( self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, ) -> None: super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) self.sigmoid_output = sigmoid_output def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) if self.sigmoid_output: x = F.sigmoid(x) return x class ResNet(nn.Module): def __init__(self, block, layers, sample_size, sample_duration, shortcut_type='B', num_classes=400): self.num_classes = num_classes self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv3d( 1, 64, kernel_size=7, stride=(1, 2, 2), padding=(3, 3, 3), bias=False) #self.bn1 = nn.BatchNorm3d(64) self.gn1 = nn.GroupNorm(32,64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type) self.layer2 = self._make_layer( block, 128, layers[1], shortcut_type, stride=2) self.layer3 = self._make_layer( block, 256, layers[2], shortcut_type, stride=2) self.layer4 = self._make_layer( block, 512, layers[3], shortcut_type, stride=2) last_duration = int(math.ceil(sample_duration / 16)) last_size = int(math.ceil(sample_size / 32)) self.avgpool = nn.AvgPool3d( (last_duration, last_size, last_size), stride=1) # self.avgpool = nn.AvgPool3d( # (4, 2, 2), stride=1) #self.fc = nn.Linear(81920, num_classes) self.classfily = MLP(81920, 256, self.num_classes, 2, sigmoid_output=False) # for m in self.modules(): # if isinstance(m, nn.Conv3d): # m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out') # elif isinstance(m, nn.BatchNorm3d): # m.weight.data.fill_(1) # m.bias.data.zero_() for m in self.modules(): if isinstance(m, nn.Conv3d): m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out') elif isinstance(m, nn.GroupNorm): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, shortcut_type, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: if shortcut_type == 'A': downsample = partial( downsample_basic_block, planes=planes * block.expansion, stride=stride) else: downsample = nn.Sequential( nn.Conv3d( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.GroupNorm(32,planes * block.expansion)) # downsample = nn.Sequential( # nn.Conv3d( # self.inplanes, # planes * block.expansion, # kernel_size=1, # stride=stride, # bias=False), nn.BatchNorm3d(planes * block.expansion)) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) #x = self.bn1(x) x = self.gn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) #x = self.fc(x) self.feature = x x = self.classfily(x) if self.num_classes==1: x = F.sigmoid(x) return x # def initialize_weights(self): # # print(self.modules()) # # for m in self.modules(): # if isinstance(m, nn.Linear): # # print(m.weight.data.type()) # # input() # # m.weight.data.fill_(1.0) # nn.init.kaiming_normal_(m.weight,a=0, mode='fan_in', nonlinearity='relu') # print(m.weight) def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv2d') != -1: nn.init.xavier_normal_(m.weight.data) nn.init.constant_(m.bias.data, 0.0) elif classname.find('Linear') != -1: nn.init.xavier_normal_(m.weight) nn.init.constant_(m.bias, 0.0) def get_fine_tuning_parameters(model, ft_begin_index): if ft_begin_index == 0: return model.parameters() ft_module_names = [] for i in range(ft_begin_index, 5): ft_module_names.append('layer{}'.format(i)) ft_module_names.append('fc') parameters = [] for k, v in model.named_parameters(): for ft_module in ft_module_names: if ft_module in k: parameters.append({'params': v}) break else: parameters.append({'params': v, 'lr': 0.0}) return parameters def resnet10(**kwargs): """Constructs a ResNet-18 model. """ model = ResNet(BasicBlock, [1, 1, 1, 1], **kwargs) return model def resnet18(**kwargs): """Constructs a ResNet-18 model. """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) return model def resnet34(**kwargs): """Constructs a ResNet-34 model. """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) return model def resnet50(**kwargs): """Constructs a ResNet-50 model. """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) #model.apply(weights_init) return model def resnet101(**kwargs): """Constructs a ResNet-101 model. """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) # model.apply(weights_init) return model def resnet152(**kwargs): """Constructs a ResNet-101 model. """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) return model def resnet200(**kwargs): """Constructs a ResNet-101 model. """ model = ResNet(Bottleneck, [3, 24, 36, 3], **kwargs) # model.apply(weights_init) return model