



















import gradio as gr import numpy as np from huggingface_hub import hf_hub_url, cached_download import PIL import onnx import onnxruntime config_file_url = hf_hub_url("Jacopo/ToonClip", filename="model.onnx") model_file = cached_download(config_file_url) onnx_model = onnx.load(model_file) onnx.checker.check_model(onnx_model) opts = onnxruntime.SessionOptions() opts.intra_op_num_threads = 16 ort_session = onnxruntime.InferenceSession(model_file, sess_options=opts) input_name = ort_session.get_inputs()[0].name output_name = ort_session.get_outputs()[0].name def normalize(x, mean=(0., 0., 0.), std=(1.0, 1.0, 1.0)): # x = (x - mean) / std x = np.asarray(x, dtype=np.float32) if len(x.shape) == 4: for dim in range(3): x[:, dim, :, :] = (x[:, dim, :, :] - mean[dim]) / std[dim] if len(x.shape) == 3: for dim in range(3): x[dim, :, :] = (x[dim, :, :] - mean[dim]) / std[dim] return x def denormalize(x, mean=(0., 0., 0.), std=(1.0, 1.0, 1.0)): # x = (x * std) + mean x = np.asarray(x, dtype=np.float32) if len(x.shape) == 4: for dim in range(3): x[:, dim, :, :] = (x[:, dim, :, :] * std[dim]) + mean[dim] if len(x.shape) == 3: for dim in range(3): x[dim, :, :] = (x[dim, :, :] * std[dim]) + mean[dim] return x def nogan(input_img): i = np.asarray(input_img) i = i.astype("float32") i = np.transpose(i, (2, 0, 1)) i = np.expand_dims(i, 0) i = i / 255.0 i = normalize(i, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ort_outs = ort_session.run([output_name], {input_name: i}) output = ort_outs output = output[0][0] output = denormalize(output, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) output = output * 255.0 output = output.astype('uint8') output = np.transpose(output, (1, 2, 0)) output_image = PIL.Image.fromarray(output, 'RGB') return output_image title = "" description = """ """ article = """
Example images from untrained FFHQ validation set: