Spaces:
Sleeping
Sleeping
Update question_generator.py
Browse files- question_generator.py +43 -61
question_generator.py
CHANGED
@@ -3,6 +3,7 @@ import csv
|
|
3 |
import os
|
4 |
import logging
|
5 |
import hashlib
|
|
|
6 |
from typing import List, Dict
|
7 |
from datetime import datetime
|
8 |
from mistralai.client import MistralClient
|
@@ -22,48 +23,7 @@ model = "mistral-large-latest"
|
|
22 |
# Initialize Mistral client
|
23 |
client = MistralClient(api_key=api_key)
|
24 |
|
25 |
-
|
26 |
-
"""Load data from a CSV file."""
|
27 |
-
logging.info(f"Loading data from {file_path}...")
|
28 |
-
try:
|
29 |
-
with open(file_path, 'r', encoding='utf-8') as csvfile:
|
30 |
-
reader = csv.DictReader(csvfile)
|
31 |
-
data = list(reader)
|
32 |
-
logging.info(f"Loaded {len(data)} rows from {file_path}")
|
33 |
-
return data
|
34 |
-
except FileNotFoundError:
|
35 |
-
logging.error(f"File not found: {file_path}")
|
36 |
-
raise
|
37 |
-
except csv.Error as e:
|
38 |
-
logging.error(f"Error reading CSV file {file_path}: {e}")
|
39 |
-
raise
|
40 |
-
|
41 |
-
# Load data from both CSV files
|
42 |
-
try:
|
43 |
-
detailed_cases = load_csv_data('processed_medical_history.csv')
|
44 |
-
infectious_diseases = load_csv_data('infectious_diseases.csv')
|
45 |
-
except Exception as e:
|
46 |
-
logging.error(f"Failed to load CSV data: {e}")
|
47 |
-
raise
|
48 |
-
|
49 |
-
def hash_question(question: str) -> str:
|
50 |
-
"""Generate a hash for a question to check for duplicates."""
|
51 |
-
return hashlib.md5(question.encode()).hexdigest()
|
52 |
-
|
53 |
-
def load_generated_questions() -> set:
|
54 |
-
"""Load previously generated question hashes from a file."""
|
55 |
-
try:
|
56 |
-
with open('generated_questions.txt', 'r') as f:
|
57 |
-
return set(line.strip() for line in f)
|
58 |
-
except FileNotFoundError:
|
59 |
-
return set()
|
60 |
-
|
61 |
-
def save_generated_question(question_hash: str):
|
62 |
-
"""Save a newly generated question hash to the file."""
|
63 |
-
with open('generated_questions.txt', 'a') as f:
|
64 |
-
f.write(question_hash + '\n')
|
65 |
-
|
66 |
-
generated_questions = load_generated_questions()
|
67 |
|
68 |
def generate_microbiology_question() -> Dict[str, str]:
|
69 |
"""Generate a microbiology question."""
|
@@ -151,26 +111,48 @@ def generate_microbiology_question() -> Dict[str, str]:
|
|
151 |
}}
|
152 |
"""
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
# Example usage
|
176 |
if __name__ == "__main__":
|
|
|
3 |
import os
|
4 |
import logging
|
5 |
import hashlib
|
6 |
+
import json
|
7 |
from typing import List, Dict
|
8 |
from datetime import datetime
|
9 |
from mistralai.client import MistralClient
|
|
|
23 |
# Initialize Mistral client
|
24 |
client = MistralClient(api_key=api_key)
|
25 |
|
26 |
+
# ... (previous functions remain the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def generate_microbiology_question() -> Dict[str, str]:
|
29 |
"""Generate a microbiology question."""
|
|
|
111 |
}}
|
112 |
"""
|
113 |
|
114 |
+
try:
|
115 |
+
chat_response = client.chat(
|
116 |
+
model=model,
|
117 |
+
messages=[
|
118 |
+
ChatMessage(role="system", content="You are a medical educator creating unique microbiology questions for the NBME exam. Ensure each question is distinct from previously generated ones and follows the specified template."),
|
119 |
+
ChatMessage(role="user", content=prompt)
|
120 |
+
]
|
121 |
+
)
|
122 |
+
|
123 |
+
response_content = chat_response.choices[0].message.content
|
124 |
+
logging.info(f"Received response from Mistral API: {response_content[:100]}...") # Log first 100 characters
|
125 |
+
|
126 |
+
# Parse the JSON response
|
127 |
+
question_data = json.loads(response_content)
|
128 |
+
|
129 |
+
# Validate the structure of the parsed JSON
|
130 |
+
required_keys = ["question", "options", "correct_answer", "explanation", "medical_reasoning"]
|
131 |
+
if not all(key in question_data for key in required_keys):
|
132 |
+
raise ValueError("Response is missing required keys")
|
133 |
+
|
134 |
+
if not all(key in question_data["options"] for key in ["A", "B", "C", "D", "E"]):
|
135 |
+
raise ValueError("Response is missing required option keys")
|
136 |
+
|
137 |
+
# Save the question hash
|
138 |
+
question_hash = hash_question(question_data['question'])
|
139 |
+
if question_hash not in generated_questions:
|
140 |
+
generated_questions.add(question_hash)
|
141 |
+
save_generated_question(question_hash)
|
142 |
+
|
143 |
+
return question_data
|
144 |
|
145 |
+
except json.JSONDecodeError as e:
|
146 |
+
logging.error(f"Failed to parse JSON response: {e}")
|
147 |
+
logging.error(f"Response content: {response_content}")
|
148 |
+
raise
|
149 |
+
except ValueError as e:
|
150 |
+
logging.error(f"Invalid response structure: {e}")
|
151 |
+
logging.error(f"Response content: {response_content}")
|
152 |
+
raise
|
153 |
+
except Exception as e:
|
154 |
+
logging.error(f"An unexpected error occurred: {e}")
|
155 |
+
raise
|
156 |
|
157 |
# Example usage
|
158 |
if __name__ == "__main__":
|