File size: 6,464 Bytes
6a6edcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#@title Load models
import torch
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline

device = torch.device("cpu")
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
    device = torch.device("mps")
if torch.cuda.is_available():
    device = torch.device("cuda")
print("RUNNING ON:", device)

c_dtype = torch.bfloat16 if device.type == "cpu" else torch.float
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=c_dtype)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.half)
prior.to(device)
decoder.to(device)

import random
import gc
import numpy as np
import gradio as gr

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1536

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def generate_prior(prompt, negative_prompt, generator, width, height, num_inference_steps, guidance_scale, num_images_per_prompt):
    prior_output = prior(
        prompt=prompt,
        height=height,
        width=width,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_images_per_prompt=num_images_per_prompt,
        num_inference_steps=num_inference_steps
    )
    torch.cuda.empty_cache()
    gc.collect()
    return prior_output.image_embeddings


def generate_decoder(prior_embeds, prompt, negative_prompt, generator, num_inference_steps, guidance_scale):
    decoder_output = decoder(
        image_embeddings=prior_embeds.to(device=device, dtype=decoder.dtype),
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        output_type="pil",
        num_inference_steps=num_inference_steps,
        generator=generator
    ).images
    torch.cuda.empty_cache()
    gc.collect()
    return decoder_output


@torch.inference_mode()
def generate(
    prompt: str,
    negative_prompt: str = "",
    seed: int = 0,
    randomize_seed: bool = True,
    width: int = 1024,
    height: int = 1024,
    prior_num_inference_steps: int = 20,
    prior_guidance_scale: float = 4.0,
    decoder_num_inference_steps: int = 10,
    decoder_guidance_scale: float = 0.0,
    num_images_per_prompt: int = 2,
):
    """Generate images using Stable Cascade."""
    seed = randomize_seed_fn(seed, randomize_seed)
    print("seed:", seed)
    generator = torch.Generator(device=device).manual_seed(seed)
    prior_embeds = generate_prior(
        prompt=prompt,
        negative_prompt=negative_prompt,
        generator=generator,
        width=width,
        height=height,
        num_inference_steps=prior_num_inference_steps,
        guidance_scale=prior_guidance_scale,
        num_images_per_prompt=num_images_per_prompt,

    )

    decoder_output = generate_decoder(
        prior_embeds=prior_embeds,
        prompt=prompt,
        negative_prompt=negative_prompt,
        generator=generator,
        num_inference_steps=decoder_num_inference_steps,
        guidance_scale=decoder_guidance_scale,
    )

    return decoder_output


examples = [
    "An astronaut riding a green horse",
    "A mecha robot in a favela by Tarsila do Amaral",
    "The sprirt of a Tamagotchi wandering in the city of Los Angeles",
    "A delicious feijoada ramen dish"
]

with gr.Blocks(css="gradio_app/style.css") as demo:
    with gr.Column():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            placeholder="Enter your prompt",
        )
        run_button = gr.Button("Run")
        with gr.Accordion("Advanced options", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a Negative Prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            width = gr.Slider(
                label="Width",
                minimum=1024,
                maximum=MAX_IMAGE_SIZE,
                step=128,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=1024,
                maximum=MAX_IMAGE_SIZE,
                step=128,
                value=1024,
            )
            num_images_per_prompt = gr.Slider(
                label="Number of Images",
                minimum=1,
                maximum=2,
                step=1,
                value=2,
            )
            prior_guidance_scale = gr.Slider(
                label="Prior Guidance Scale",
                minimum=0,
                maximum=20,
                step=0.1,
                value=4.0,
            )
            prior_num_inference_steps = gr.Slider(
                label="Prior Inference Steps",
                minimum=10,
                maximum=30,
                step=1,
                value=20,
            )

            decoder_guidance_scale = gr.Slider(
                label="Decoder Guidance Scale",
                minimum=0,
                maximum=0,
                step=0.1,
                value=0.0,
            )
            decoder_num_inference_steps = gr.Slider(
                label="Decoder Inference Steps",
                minimum=4,
                maximum=12,
                step=1,
                value=10,
            )
    with gr.Column():
        result = gr.Gallery(label="Result", show_label=False)

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
    )

    inputs = [
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            prior_num_inference_steps,
            prior_guidance_scale,
            decoder_num_inference_steps,
            decoder_guidance_scale,
            num_images_per_prompt,
    ]
    prompt.submit(
        fn=generate,
        inputs=inputs,
        outputs=result,
    )
    negative_prompt.submit(
        fn=generate,
        inputs=inputs,
        outputs=result,
    )
    run_button.click(
        fn=generate,
        inputs=inputs,
        outputs=result,
    )

demo.queue(20).launch()