ameerazam08's picture
Update inference/utils.py
14a68d2 verified
raw
history blame
1.97 kB
import PIL
import torch
import requests
import torchvision
from math import ceil
from io import BytesIO
import torchvision.transforms.functional as F
def download_image(url):
return PIL.Image.open(requests.get(url, stream=True).raw).convert("RGB")
def resize_image(image, size=768):
tensor_image = F.to_tensor(image)
resized_image = F.resize(tensor_image, size, antialias=True)
return resized_image
def downscale_images(images, factor=3/4):
scaled_height, scaled_width = int(((images.size(-2)*factor)//32)*32), int(((images.size(-1)*factor)//32)*32)
scaled_image = torchvision.transforms.functional.resize(images, (scaled_height, scaled_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST)
return scaled_image
def show_images(images, rows=None, cols=None, return_images=False, **kwargs):
if images.size(1) == 1:
images = images.repeat(1, 3, 1, 1)
elif images.size(1) > 3:
images = images[:, :3]
if rows is None:
rows = 1
if cols is None:
cols = images.size(0) // rows
_, _, h, w = images.shape
grid = PIL.Image.new('RGB', size=(cols * w, rows * h))
for i, img in enumerate(images):
img = torchvision.transforms.functional.to_pil_image(img.clamp(0, 1))
grid.paste(img, box=(i % cols * w, i // cols * h))
if return_images:
return grid
def calculate_latent_sizes(height=1024, width=1024, batch_size=4, compression_factor_b=42.67, compression_factor_a=4.0):
resolution_multiple = 42.67
latent_height = ceil(height / compression_factor_b)
latent_width = ceil(width / compression_factor_b)
stage_c_latent_shape = (batch_size, 16, latent_height, latent_width)
latent_height = ceil(height / compression_factor_a)
latent_width = ceil(width / compression_factor_a)
stage_b_latent_shape = (batch_size, 4, latent_height, latent_width)
return stage_c_latent_shape, stage_b_latent_shape