import os import yaml import torch import torchvision from tqdm import tqdm from inference.utils import * from train import ControlNetCore, WurstCoreB import warnings warnings.filterwarnings("ignore") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Upscale_CaseCade: def __init__(self) -> None: self.config_file = './configs/inference/controlnet_c_3b_sr.yaml' # SETUP STAGE C with open(self.config_file, "r", encoding="utf-8") as file: loaded_config = yaml.safe_load(file) self.core = ControlNetCore(config_dict=loaded_config, device=device, training=False) # SETUP STAGE B self.config_file_b = './configs/inference/stage_b_3b.yaml' with open(self.config_file_b, "r", encoding="utf-8") as file: self.config_file_b = yaml.safe_load(file) self.core_b = WurstCoreB(config_dict=self.config_file_b, device=device, training=False) self.extras = self.core.setup_extras_pre() self.models = self.core.setup_models(self.extras) self.models.generator.eval().requires_grad_(False) print("CONTROLNET READY") self.extras_b = self.core_b.setup_extras_pre() self.models_b = self.core_b.setup_models(self.extras_b, skip_clip=True) self.models_b = WurstCoreB.Models( **{**self.models_b.to_dict(), 'tokenizer': self.models.tokenizer, 'text_model': self.models.text_model} ) self.models_b.generator.eval().requires_grad_(False) print("STAGE B READY") self.caption = "a photo of image" self.cnet_multiplier = 1.0 # 0.8 # 0.3 # Stage C Parameters self.extras.sampling_configs['cfg'] = 1 self.extras.sampling_configs['shift'] = 2 self.extras.sampling_configs['timesteps'] = 20 self.extras.sampling_configs['t_start'] = 1.0 # Stage B Parameters self.extras_b.sampling_configs['cfg'] = 1.1 self.extras_b.sampling_configs['shift'] = 1 self.extras_b.sampling_configs['timesteps'] = 10 self.extras_b.sampling_configs['t_start'] = 1.0 # self.models = ControlNetCore.Models( # **{**self.models.to_dict(), 'generator': torch.compile(self.models.generator, mode="reduce-overhead", fullgraph=True)} # ) # self.models_b = WurstCoreB.Models( # **{**self.models_b.to_dict(), 'generator': torch.compile(self.models_b.generator, mode="reduce-overhead", fullgraph=True)} # ) def upscale_image(self,caption,image_pil,scale_fator): batch_size = 1 cnet_override = None images = resize_image(image_pil).unsqueeze(0).expand(batch_size, -1, -1, -1) batch = {'images': images} with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16): effnet_latents = self.core.encode_latents(batch, self.models, self.extras) effnet_latents_up = torch.nn.functional.interpolate(effnet_latents, scale_factor=scale_fator, mode="nearest") cnet = self.models.controlnet(effnet_latents_up) cnet_uncond = cnet cnet_input = torch.nn.functional.interpolate(images, scale_factor=scale_fator, mode="nearest") # cnet, cnet_input = self.core.get_cnet(batch, self.models, self.extras) # cnet_uncond = cnet height, width = int(cnet[0].size(-2)*32*4/3), int(cnet[0].size(-1)*32*4/3) stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size) # PREPARE CONDITIONS batch['captions'] = [caption] * batch_size conditions = self.core.get_conditions(batch, self.models, self.extras, is_eval=True, is_unconditional=False, eval_image_embeds=False) unconditions = self.core.get_conditions(batch, self.models, self.extras, is_eval=True, is_unconditional=True, eval_image_embeds=False) conditions['cnet'] = [c.clone() * self.cnet_multiplier if c is not None else c for c in cnet] unconditions['cnet'] = [c.clone() * self.cnet_multiplier if c is not None else c for c in cnet_uncond] conditions_b = self.core_b.get_conditions(batch, self.models_b, self.extras_b, is_eval=True, is_unconditional=False) unconditions_b = self.core_b.get_conditions(batch, self.models_b, self.extras_b, is_eval=True, is_unconditional=True) # torch.manual_seed(42) sampling_c = self.extras.gdf.sample( self.models.generator, conditions, stage_c_latent_shape, unconditions, device=device, **self.extras.sampling_configs, ) for (sampled_c, _, _) in tqdm(sampling_c, total=self.extras.sampling_configs['timesteps']): sampled_c = sampled_c # preview_c = models.previewer(sampled_c).float() # show_images(preview_c) conditions_b['effnet'] = sampled_c unconditions_b['effnet'] = torch.zeros_like(sampled_c) sampling_b = self.extras_b.gdf.sample( self.models_b.generator, conditions_b, stage_b_latent_shape, unconditions_b, device=device, **self.extras_b.sampling_configs ) for (sampled_b, _, _) in tqdm(sampling_b, total=self.extras_b.sampling_configs['timesteps']): sampled_b = sampled_b sampled = self.models_b.stage_a.decode(sampled_b).float() # og=show_images(batch['images'],return_images=True) upscale=show_images(sampled,return_images=True) return upscale