Spaces:
Paused
Paused
import gradio as gr | |
import cv2 | |
import spaces | |
import numpy as np | |
import tempfile | |
import os | |
from ultralytics import YOLO | |
def stream_object_detection(video_path): | |
# Load the YOLO model | |
model = YOLO("weights/best.pt") | |
cap = cv2.VideoCapture(video_path) | |
# Get video properties | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH) // 2) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) // 2) | |
# Temporary file for processed video | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") | |
temp_file_path = temp_file.name | |
# VideoWriter to save processed frames | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
out = cv2.VideoWriter(temp_file_path, fourcc, fps, (width, height)) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame = cv2.resize(frame, (width, height)) | |
# Run YOLO predictions | |
results = model.predict(frame) | |
# Annotate frame with detection results | |
annotated_frame = results[0].plot() | |
# Write annotated frame to the video file | |
out.write(annotated_frame) | |
cap.release() | |
out.release() | |
return temp_file_path | |
with gr.Blocks() as app: | |
with gr.Row(): | |
with gr.Column(): | |
video_input = gr.Video(label="Upload Video") | |
# conf_threshold = gr.Slider( | |
# label="Confidence Threshold", | |
# minimum=0.0, | |
# maximum=1.0, | |
# step=0.05, | |
# value=0.30, | |
# ) | |
with gr.Column(): | |
video_output = gr.Video(label="Processed Video") | |
with gr.Row(): | |
with gr.Column(): | |
detect_button = gr.Button("Start Detection", variant="primary") | |
detect_button.click( | |
fn=stream_object_detection, | |
inputs=[video_input], | |
outputs=video_output, | |
) | |
if __name__ == "__main__": | |
app.launch() | |