Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
3 |
+
|
4 |
+
# Load the dataset
|
5 |
+
dataset = load_dataset("json", data_files="dataset.jsonl")
|
6 |
+
|
7 |
+
# Load the model and tokenizer
|
8 |
+
model_name = "Salesforce/codegen-2B-multi"
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Tokenize the dataset
|
13 |
+
def tokenize_function(examples):
|
14 |
+
return tokenizer(examples["input"], text_target=examples["output"], truncation=True)
|
15 |
+
|
16 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
17 |
+
|
18 |
+
# Define training arguments
|
19 |
+
training_args = TrainingArguments(
|
20 |
+
output_dir="./results",
|
21 |
+
overwrite_output_dir=True,
|
22 |
+
evaluation_strategy="epoch",
|
23 |
+
learning_rate=5e-5,
|
24 |
+
per_device_train_batch_size=4,
|
25 |
+
num_train_epochs=3,
|
26 |
+
save_strategy="epoch",
|
27 |
+
logging_dir="./logs",
|
28 |
+
)
|
29 |
+
|
30 |
+
# Train the model
|
31 |
+
trainer = Trainer(
|
32 |
+
model=model,
|
33 |
+
args=training_args,
|
34 |
+
train_dataset=tokenized_dataset["train"],
|
35 |
+
eval_dataset=tokenized_dataset["train"],
|
36 |
+
)
|
37 |
+
|
38 |
+
trainer.train()
|
39 |
+
trainer.save_model("./fine_tuned_codegen")
|
40 |
+
tokenizer.save_pretrained("./fine_tuned_codegen")
|
41 |
+
print("Training complete. Model saved.")
|