Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +95 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
import asyncio
|
3 |
+
import gradio as gr
|
4 |
+
import re
|
5 |
+
import string
|
6 |
+
import nltk
|
7 |
+
nltk.download('punkt')
|
8 |
+
nltk.download('wordnet')
|
9 |
+
nltk.download('omw-1.4')
|
10 |
+
from nltk.stem import WordNetLemmatizer
|
11 |
+
import pickle
|
12 |
+
|
13 |
+
# Function to remove URLs from text
|
14 |
+
def remove_urls(text):
|
15 |
+
return re.sub(r'http[s]?://\S+', '', text)
|
16 |
+
|
17 |
+
# Function to remove punctuations from text
|
18 |
+
def remove_punctuation(text):
|
19 |
+
regular_punct = string.punctuation
|
20 |
+
return str(re.sub(r'['+regular_punct+']', '', str(text)))
|
21 |
+
|
22 |
+
# Function to convert the text into lower case
|
23 |
+
def lower_case(text):
|
24 |
+
return text.lower()
|
25 |
+
|
26 |
+
# Function to lemmatize text
|
27 |
+
def lemmatize(text):
|
28 |
+
wordnet_lemmatizer = WordNetLemmatizer()
|
29 |
+
|
30 |
+
tokens = nltk.word_tokenize(text)
|
31 |
+
lemma_txt = ''
|
32 |
+
for w in tokens:
|
33 |
+
lemma_txt = lemma_txt + wordnet_lemmatizer.lemmatize(w) + ' '
|
34 |
+
|
35 |
+
return lemma_txt
|
36 |
+
|
37 |
+
def load_model():
|
38 |
+
# Define the file path where the trained model is saved
|
39 |
+
model_file_path = "logistic_regression_model.pkl"
|
40 |
+
|
41 |
+
# Load the saved Logistic Regression model from the file
|
42 |
+
with open(model_file_path, 'rb') as file:
|
43 |
+
loaded_model = pickle.load(file)
|
44 |
+
|
45 |
+
return loaded_model
|
46 |
+
|
47 |
+
def load_tfidf():
|
48 |
+
# Define the file path where the TF-IDF vectorizer is saved
|
49 |
+
vectorizer_file_path = "tfidf_vectorizer.pkl"
|
50 |
+
|
51 |
+
# Load the saved TF-IDF vectorizer from the file
|
52 |
+
with open(vectorizer_file_path, 'rb') as file:
|
53 |
+
loaded_vectorizer = pickle.load(file)
|
54 |
+
|
55 |
+
return loaded_vectorizer
|
56 |
+
|
57 |
+
def preprocess(input_text):
|
58 |
+
# Preprocess the input text
|
59 |
+
input_text = remove_urls(input_text)
|
60 |
+
input_text = remove_punctuation(input_text)
|
61 |
+
input_text = lower_case(input_text)
|
62 |
+
input_text = lemmatize(input_text)
|
63 |
+
|
64 |
+
# Apply TF-IDF vectorization
|
65 |
+
input_text = [input_text]
|
66 |
+
tfidf = load_tfidf()
|
67 |
+
input_text = tfidf.transform(input_text)
|
68 |
+
|
69 |
+
return input_text
|
70 |
+
|
71 |
+
app = FastAPI()
|
72 |
+
|
73 |
+
@app.get('/')
|
74 |
+
async def welcome():
|
75 |
+
return "Welcome to our Sentiment Analysis API"
|
76 |
+
|
77 |
+
@app.post('/predict_sentiment')
|
78 |
+
async def predict_sentiment(input_text):
|
79 |
+
loaded_model = load_model()
|
80 |
+
predicted_sentiment = loaded_model.predict(preprocess(input_text))
|
81 |
+
if predicted_sentiment == 0:
|
82 |
+
sentiment = "Sentiment: Negative"
|
83 |
+
else:
|
84 |
+
sentiment = "Sentiment: Positive"
|
85 |
+
return sentiment
|
86 |
+
|
87 |
+
async def predict(input):
|
88 |
+
sentiment = await predict_sentiment(input)
|
89 |
+
return sentiment
|
90 |
+
|
91 |
+
# Create Gradio interface
|
92 |
+
iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="Movie Review Sentiment Analysis API")
|
93 |
+
iface.launch(share=True)
|
94 |
+
|
95 |
+
asyncio.run(predict())
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.110.0
|
2 |
+
gradio==4.23.0
|
3 |
+
nltk==3.8.1
|