amirhoseinsedaghati's picture
Upload pages files
2a97daa verified
raw
history blame
2.08 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from configs.download_files import FileDownloader
from configs.db_configs import add_one_item
from streamlit.components.v1 import html
from configs.html_features import set_image
def summarize_text(text):
prefix = 'summarize: '
text = prefix + text
tokenizer = AutoTokenizer.from_pretrained('stevhliu/my_awesome_billsum_model')
input_ids = tokenizer(text=text, return_tensors='pt')['input_ids']
model = AutoModelForSeq2SeqLM.from_pretrained('stevhliu/my_awesome_billsum_model')
if len(input_ids[0]) < 200:
output_ids = model.generate(input_ids, max_new_tokens=100, do_sample=False)
summarized_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return summarized_text
elif len(input_ids[0]) > 200:
output_ids = model.generate(input_ids, max_new_tokens=round(len(input_ids[0]) * 1/2), do_sample=False)
summarized_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return summarized_text
def main():
st.title('Text Summarizer')
im1, im2, im3 = st.columns([1, 5.3, 1])
with im1:
pass
with im2:
url = "https://i.postimg.cc/jdF1hPng/combined.png"
html(set_image(url), height=500, width=500)
with im3:
pass
text = st.text_area('Text Summarizer', placeholder='Enter your input text here ...', height=200, label_visibility='hidden')
if st.button('Summarize it'):
if text != "":
with st.expander('Original Text'):
st.write(text)
add_one_item(text, "Text Summarizer")
with st.expander('Summarized Text'):
summarized_text = summarize_text(text)
st.write(summarized_text)
with st.expander('Download Summarized Text'):
FileDownloader(summarized_text, 'txt').download()
else:
st.error('Please enter a non-empty text.')
if __name__ == '__main__':
main()