Spaces:
Runtime error
Runtime error
Amir Zait
commited on
Commit
·
f7c2e78
1
Parent(s):
0fbdf8e
added files
Browse files- app.py +75 -0
- packages.txt +3 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoProcessor, AutoModelForCTC
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
import soundfile as sf
|
5 |
+
import gradio as gr
|
6 |
+
import librosa
|
7 |
+
import torch
|
8 |
+
import sox
|
9 |
+
import os
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
api_token = os.getenv("API_TOKEN")
|
14 |
+
asr_processor = AutoProcessor.from_pretrained("imvladikon/wav2vec2-xls-r-300m-hebrew")
|
15 |
+
asr_model = AutoModelForCTC.from_pretrained("imvladikon/wav2vec2-xls-r-300m-hebrew")
|
16 |
+
|
17 |
+
en_he_translator = pipeline("translation_en_to_he")
|
18 |
+
|
19 |
+
|
20 |
+
def process_audio_file(file):
|
21 |
+
data, sr = librosa.load(file)
|
22 |
+
if sr != 16000:
|
23 |
+
data = librosa.resample(data, sr, 16000)
|
24 |
+
|
25 |
+
input_values = processor(data, sampling_rate=16_000, return_tensors="pt").input_values #.to(device)
|
26 |
+
return input_values
|
27 |
+
|
28 |
+
def transcribe(file_mic, file_upload):
|
29 |
+
warn_output = ""
|
30 |
+
if (file_mic is not None) and (file_upload is not None):
|
31 |
+
warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
32 |
+
file = file_mic
|
33 |
+
elif (file_mic is None) and (file_upload is None):
|
34 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
35 |
+
elif file_mic is not None:
|
36 |
+
file = file_mic
|
37 |
+
else:
|
38 |
+
file = file_upload
|
39 |
+
|
40 |
+
input_values = process_audio_file(file)
|
41 |
+
logits = model(input_values).logits
|
42 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
43 |
+
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
|
44 |
+
return warn_output + transcription
|
45 |
+
|
46 |
+
def convert(inputfile, outfile):
|
47 |
+
sox_tfm = sox.Transformer()
|
48 |
+
sox_tfm.set_output_format(
|
49 |
+
file_type="wav", channels=1, encoding="signed-integer", rate=16000, bits=16
|
50 |
+
)
|
51 |
+
sox_tfm.build(inputfile, outfile)
|
52 |
+
|
53 |
+
def parse_transcription(wav_file):
|
54 |
+
filename = wav_file.name.split('.')[0]
|
55 |
+
convert(wav_file.name, filename + "16k.wav")
|
56 |
+
speech, _ = sf.read(filename + "16k.wav")
|
57 |
+
print(speech.shape)
|
58 |
+
input_values = trans_processor(speech, sampling_rate=16_000, return_tensors="pt").input_values
|
59 |
+
logits = trans_model(input_values).logits
|
60 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
61 |
+
transcription = trans_processor.decode(predicted_ids[0], skip_special_tokens=True)
|
62 |
+
translated = en_he_translator(trasncription)
|
63 |
+
return transcription
|
64 |
+
|
65 |
+
output = gr.outputs.Textbox(label="TEXT")
|
66 |
+
input_mic = gr.inputs.Audio(source="microphone", type="file", optional=True)
|
67 |
+
input_upload = gr.inputs.Audio(source="upload", type="file", optional=True)
|
68 |
+
|
69 |
+
gr.Interface(parse_transcription, inputs=[input_mic], outputs=output,
|
70 |
+
analytics_enabled=False,
|
71 |
+
show_tips=False,
|
72 |
+
theme='huggingface',
|
73 |
+
layout='horizontal',
|
74 |
+
title="Draw Me A Ship in Hebrew",
|
75 |
+
enable_queue=True).launch(inline=False)
|
packages.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
libsndfile1
|
2 |
+
sox
|
3 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
librosa
|
3 |
+
soundfile
|
4 |
+
torch
|
5 |
+
transformers
|
6 |
+
sox
|
7 |
+
sentencepiece
|