Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -74,6 +74,15 @@ def inference_visualization(input_img, transparency = 0.5, target_layer_number =
|
|
74 |
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
75 |
return visualization
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
78 |
description = "Gradio interface to infer on ResNet18 model, and get GradCAM results"
|
79 |
examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
|
@@ -85,7 +94,7 @@ demo = gr.Interface(
|
|
85 |
# title = title,
|
86 |
# description = description,
|
87 |
# examples = examples,
|
88 |
-
fn=
|
89 |
inputs=[
|
90 |
gr.Radio(["Yes", "No"], label="View GradCAM images?"),
|
91 |
gr.Number(label="Number of GradCAM images to view", default=5, max=10),
|
@@ -106,15 +115,8 @@ demo = gr.Interface(
|
|
106 |
live=True
|
107 |
)
|
108 |
|
109 |
-
# Callback function for the Gradio interface
|
110 |
-
def gradio_callback(view_gradcam, num_gradcam_images, layer_name, opacity,
|
111 |
-
view_misclassified, num_misclassified_images,
|
112 |
-
input_img,submit):
|
113 |
-
confidence = inference_confidences(input_img, transparency = 0.5, target_layer_number = -1)
|
114 |
-
visualization = inference_visualization(input_img, transparency = 0.5, target_layer_number = -1)
|
115 |
-
return confidence, visualization
|
116 |
|
117 |
|
118 |
# Set the callback function to the Gradio interface
|
119 |
-
demo.fn = gradio_callback
|
120 |
demo.launch()
|
|
|
74 |
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
75 |
return visualization
|
76 |
|
77 |
+
# Callback function for the Gradio interface
|
78 |
+
def gradio_callback(view_gradcam, num_gradcam_images, layer_name, opacity,
|
79 |
+
view_misclassified, num_misclassified_images,
|
80 |
+
input_img,submit):
|
81 |
+
confidence = inference_confidences(input_img, transparency = 0.5, target_layer_number = -1)
|
82 |
+
visualization = inference_visualization(input_img, transparency = 0.5, target_layer_number = -1)
|
83 |
+
return confidence, visualization
|
84 |
+
|
85 |
+
|
86 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
87 |
description = "Gradio interface to infer on ResNet18 model, and get GradCAM results"
|
88 |
examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
|
|
|
94 |
# title = title,
|
95 |
# description = description,
|
96 |
# examples = examples,
|
97 |
+
fn=gradio_callback, # We'll add the function later after defining all functions, # We'll add the function later after defining all functions
|
98 |
inputs=[
|
99 |
gr.Radio(["Yes", "No"], label="View GradCAM images?"),
|
100 |
gr.Number(label="Number of GradCAM images to view", default=5, max=10),
|
|
|
115 |
live=True
|
116 |
)
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
|
120 |
# Set the callback function to the Gradio interface
|
121 |
+
# demo.fn = gradio_callback
|
122 |
demo.launch()
|