Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import json | |
import numpy as np | |
import torch | |
import soundfile as sf | |
import gradio as gr | |
from diffusers import DDPMScheduler | |
from pico_model import PicoDiffusion | |
from audioldm.variational_autoencoder.autoencoder import AutoencoderKL | |
from llm_preprocess import get_event, preprocess_gemini, preprocess_gpt | |
class dotdict(dict): | |
"""dot.notation access to dictionary attributes""" | |
__getattr__ = dict.get | |
__setattr__ = dict.__setitem__ | |
__delattr__ = dict.__delitem__ | |
class InferRunner: | |
def __init__(self, device): | |
vae_config = json.load(open("ckpts/ldm/vae_config.json")) | |
self.vae = AutoencoderKL(**vae_config).to(device) | |
vae_weights = torch.load("ckpts/ldm/pytorch_model_vae.bin", map_location=device) | |
self.vae.load_state_dict(vae_weights) | |
train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0])) | |
self.pico_model = PicoDiffusion( | |
scheduler_name=train_args.scheduler_name, | |
unet_model_config_path=train_args.unet_model_config, | |
snr_gamma=train_args.snr_gamma, | |
freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt", | |
diffusion_pt="ckpts/pico_model/diffusion.pt", | |
).eval().to(device) | |
self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
runner = InferRunner(device) | |
event_list = get_event() | |
def infer(caption, num_steps=200, guidance_scale=3.0, audio_len=16000*10): | |
with torch.no_grad(): | |
latents = runner.pico_model.demo_inference(caption, runner.scheduler, num_steps=num_steps, guidance_scale=guidance_scale, num_samples_per_prompt=1, disable_progress=True) | |
mel = runner.vae.decode_first_stage(latents) | |
wave = runner.vae.decode_to_waveform(mel)[0][:audio_len] | |
outpath = f"output.wav" | |
sf.write(outpath, wave, samplerate=16000, subtype='PCM_16') | |
return outpath | |
def preprocess(caption): | |
output = preprocess_gemini(caption) | |
return output, output | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown("## PicoAudio") | |
with gr.Row(): | |
description_text = f"Support 18 events: {', '.join(event_list)}" | |
gr.Markdown(description_text) | |
with gr.Row(): | |
gr.Markdown("## Step1") | |
with gr.Row(): | |
preprocess_description_text = f"Preprocess: transfer free-text into timestamp caption via LLM. "+\ | |
"This demo uses Gemini as the preprocessor. If any errors occur, please try a few more times. "+\ | |
"We also provide the GPT version consistent with the paper in the file 'Files/llm_reprocessing.py'. You can use your own api_key to modify and run 'Files/inference.py' for local inference." | |
gr.Markdown(preprocess_description_text) | |
with gr.Row(): | |
with gr.Column(): | |
freetext_prompt = gr.Textbox(label="Free-text prompt: Input your free-text caption here. (e.g. a dog barks three times.)", | |
value="a dog barks three times.",) | |
preprocess_run_button = gr.Button() | |
prompt = None | |
with gr.Column(): | |
freetext_prompt_out = gr.Textbox(label="Timestamp Caption: Preprocess output") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Examples( | |
examples = [["spraying two times then gunshot three times."], | |
["a dog barks three times."], | |
["cow mooing two times."],], | |
inputs = [freetext_prompt], | |
outputs = [prompt] | |
) | |
with gr.Column(): | |
pass | |
with gr.Row(): | |
gr.Markdown("## Step2") | |
with gr.Row(): | |
generate_description_text = f"Generate audio based on timestamp caption." | |
gr.Markdown(generate_description_text) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Timestamp Caption: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1'.", | |
value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.",) | |
generate_run_button = gr.Button() | |
with gr.Accordion("Advanced options", open=False): | |
num_steps = gr.Slider(label="num_steps", minimum=1, maximum=300, value=200, step=1) | |
guidance_scale = gr.Slider(label="guidance_scale", minimum=0.1, maximum=8.0, value=3.0, step=0.1) | |
with gr.Column(): | |
outaudio = gr.Audio() | |
preprocess_run_button.click(fn=preprocess, inputs=[freetext_prompt], outputs=[prompt, freetext_prompt_out]) | |
generate_run_button.click(fn=infer, inputs=[prompt, num_steps, guidance_scale], outputs=[outaudio]) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Examples( | |
examples = [["spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031."], | |
["dog_barking at 0.562-2.562_4.25-6.25."], | |
["cow_mooing at 0.958-3.582_5.272-7.896."],], | |
inputs = [prompt, num_steps, guidance_scale], | |
outputs = [outaudio] | |
) | |
with gr.Column(): | |
pass | |
demo.launch() | |
# description_text = f"18 events: {', '.join(event_list)}" | |
# prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1'.", | |
# value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.",) | |
# outaudio = gr.Audio() | |
# num_steps = gr.Slider(label="num_steps", minimum=1, maximum=300, value=200, step=1) | |
# guidance_scale = gr.Slider(label="guidance_scale", minimum=0.1, maximum=8.0, value=3.0, step=0.1) | |
# gr_interface = gr.Interface( | |
# fn=infer, | |
# inputs=[prompt, num_steps, guidance_scale], | |
# outputs=[outaudio], | |
# title="PicoAudio", | |
# description=description_text, | |
# allow_flagging=False, | |
# examples=[ | |
# ["spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031."], | |
# ["dog_barking at 0.562-2.562_4.25-6.25."], | |
# ["cow_mooing at 0.958-3.582_5.272-7.896."], | |
# ], | |
# cache_examples="lazy", # Turn on to cache. | |
# ) | |
# gr_interface.queue(10).launch() |