Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import json | |
import numpy as np | |
import torch | |
import soundfile as sf | |
import gradio as gr | |
from diffusers import DDPMScheduler | |
from pico_model import PicoDiffusion, build_pretrained_models | |
from audioldm.variational_autoencoder.autoencoder import AutoencoderKL | |
class dotdict(dict): | |
"""dot.notation access to dictionary attributes""" | |
__getattr__ = dict.get | |
__setattr__ = dict.__setitem__ | |
__delattr__ = dict.__delitem__ | |
class InferRunner: | |
def __init__(self, device): | |
vae_config = json.load(open("ckpts/ldm/vae_config.json")) | |
self.vae = AutoencoderKL(**vae_config).to(device) | |
vae_weights = torch.load("ckpts/ldm/pytorch_model_vae.bin", map_location=device) | |
self.vae.load_state_dict(vae_weights) | |
train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0])) | |
self.pico_model = PicoDiffusion( | |
scheduler_name=train_args.scheduler_name, | |
unet_model_config_path=train_args.unet_model_config, | |
snr_gamma=train_args.snr_gamma, | |
freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt", | |
diffusion_pt="ckpts/pico_model/diffusion.pt", | |
).eval().to(device) | |
self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
runner = InferRunner(device) | |
def infer(caption, num_steps=200, guidance_scale=3.0, audio_len=16000*10): | |
with torch.no_grad(): | |
latents = runner.pico_model.demo_inference(caption, runner.scheduler, num_steps=num_steps, guidance_scale=guidance_scale, num_samples_per_prompt=1, disable_progress=True) | |
mel = runner.vae.decode_first_stage(latents) | |
wave = runner.vae.decode_to_waveform(mel)[0][:audio_len] | |
outpath = f"synthesized/output.wav" | |
sf.write(outpath, wave, samplerate=16000, subtype='PCM_16') | |
return outpath | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown("## PicoAudio") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1.", | |
value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.",) | |
run_button = gr.Button() | |
with gr.Accordion("Advanced options", open=False): | |
num_steps = gr.Slider(label="num_steps", minimum=1, | |
maximum=300, value=200, step=1) | |
guidance_scale = gr.Slider( | |
label="guidance_scale Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=3.0, step=0.1 | |
) | |
with gr.Column(): | |
outaudio = gr.Audio() | |
run_button.click(fn=infer, | |
inputs=[prompt, num_steps, guidance_scale], | |
outputs=[outaudio]) | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Examples( | |
# examples = [['An amateur recording features a steel drum playing in a higher register',25,5,55], | |
# ['An instrumental song with a caribbean feel, happy mood, and featuring steel pan music, programmed percussion, and bass',25,5,55], | |
# ['This musical piece features a playful and emotionally melodic male vocal accompanied by piano',25,5,55], | |
# ['A eerie yet calming experimental electronic track featuring haunting synthesizer strings and pads',25,5,55], | |
# ['A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques',25,5,55]], | |
# inputs = [prompt, ddim_steps, scale, seed], | |
# outputs = [outaudio], | |
# ) | |
# cache_examples="lazy", # Turn on to cache. | |
# with gr.Column(): | |
# pass | |
demo.launch() | |