ZeyuXie commited on
Commit
f3f28d3
·
verified ·
1 Parent(s): 832f552

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -0
app.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ import json
4
+ import numpy as np
5
+ import torch
6
+ import soundfile as sf
7
+ from diffusers import DDPMScheduler
8
+ from pico_model import PicoDiffusion, build_pretrained_models
9
+
10
+ class dotdict(dict):
11
+ """dot.notation access to dictionary attributes"""
12
+ __getattr__ = dict.get
13
+ __setattr__ = dict.__setitem__
14
+ __delattr__ = dict.__delitem__
15
+
16
+ class InferRunner:
17
+ def __init__(self):
18
+ self.vae, _ = build_pretrained_models("audioldm-s-full")
19
+ train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0]))
20
+ self.pico_model = PicoDiffusion(
21
+ scheduler_name=train_args.scheduler_name,
22
+ unet_model_config_path=train_args.unet_model_config,
23
+ snr_gamma=train_args.snr_gamma,
24
+ freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt",
25
+ diffusion_pt="ckpts/pico_model/diffusion.pt",
26
+ ).cuda().eval()
27
+ self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler")
28
+
29
+ def infer(caption, runner):
30
+ with torch.no_grad():
31
+ latents = runner.picomodel.demo_inference(caption, runner.scheduler, num_steps=200, guidance=3.0, num_samples=1, audio_len=16000*10, disable_progress=True)
32
+ mel = runner.vae.decode_first_stage(latents)
33
+ wave = runner.vae.decode_to_waveform(mel)[0][:audio_len]
34
+ sf.write(f"synthesized/{caption}.wav", wave, samplerate=16000, subtype='PCM_16')
35
+
36
+ infer_runner = InferRunner()
37
+
38
+ with gr.Blocks() as demo:
39
+ with gr.Row():
40
+ gr.Markdown("## PicoAudio")
41
+
42
+ with gr.Row():
43
+ with gr.Column():
44
+ prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1.",
45
+ value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.")
46
+ run_button = gr.Button()
47
+
48
+ with gr.Accordion("Advanced options", open=False):
49
+ num_steps = gr.Slider(label="num_steps", minimum=1,
50
+ maximum=300, value=200, step=1)
51
+ guidance = gr.Slider(
52
+ label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=3.0, step=0.1
53
+ )
54
+
55
+ with gr.Column():
56
+ outaudio = gr.Audio()
57
+
58
+ run_button.click(fn=infer, inputs=[
59
+ prompt, num_steps, guidance], outputs=[outaudio])
60
+ # with gr.Row():
61
+ # with gr.Column():
62
+ # gr.Examples(
63
+ # examples = [['An amateur recording features a steel drum playing in a higher register',25,5,55],
64
+ # ['An instrumental song with a caribbean feel, happy mood, and featuring steel pan music, programmed percussion, and bass',25,5,55],
65
+ # ['This musical piece features a playful and emotionally melodic male vocal accompanied by piano',25,5,55],
66
+ # ['A eerie yet calming experimental electronic track featuring haunting synthesizer strings and pads',25,5,55],
67
+ # ['A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques',25,5,55]],
68
+ # inputs = [prompt, ddim_steps, scale, seed],
69
+ # outputs = [outaudio]
70
+ # )
71
+ # with gr.Column():
72
+ # pass
73
+
74
+ demo.launch()
75
+
76
+
77
+
78
+
79
+
80
+ if __name__ == "__main__":
81
+ main()