import os import json import numpy as np import torch import soundfile as sf import gradio as gr from diffusers import DDPMScheduler from pico_model import PicoDiffusion, build_pretrained_models from audioldm.variational_autoencoder.autoencoder import AutoencoderKL class dotdict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ class InferRunner: def __init__(self, device): vae_config = json.load(open("ckpts/ldm/vae_config.json")) self.vae = AutoencoderKL(**vae_config).to(device) vae_weights = torch.load("ckpts/ldm/pytorch_model_vae.bin", map_location=device) self.vae.load_state_dict(vae_weights) train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0])) self.pico_model = PicoDiffusion( scheduler_name=train_args.scheduler_name, unet_model_config_path=train_args.unet_model_config, snr_gamma=train_args.snr_gamma, freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt", diffusion_pt="ckpts/pico_model/diffusion.pt", ).eval().to(device) self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler") device = "cuda" if torch.cuda.is_available() else "cpu" runner = InferRunner(device) def infer(caption, num_steps=200, guidance_scale=3.0, audio_len=16000*10): with torch.no_grad(): latents = runner.pico_model.demo_inference(caption, runner.scheduler, num_steps=num_steps, guidance_scale=guidance_scale, num_samples_per_prompt=1, disable_progress=True) mel = runner.vae.decode_first_stage(latents) wave = runner.vae.decode_to_waveform(mel)[0][:audio_len] outpath = f"synthesized/output.wav" sf.write(outpath, wave, samplerate=16000, subtype='PCM_16') return outpath with gr.Blocks() as demo: with gr.Row(): gr.Markdown("## PicoAudio") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1.", value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.",) run_button = gr.Button() with gr.Accordion("Advanced options", open=False): num_steps = gr.Slider(label="num_steps", minimum=1, maximum=300, value=200, step=1) guidance_scale = gr.Slider( label="guidance_scale Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=3.0, step=0.1 ) with gr.Column(): outaudio = gr.Audio() run_button.click(fn=infer, inputs=[prompt, num_steps, guidance_scale], outputs=[outaudio]) # with gr.Row(): # with gr.Column(): # gr.Examples( # examples = [['An amateur recording features a steel drum playing in a higher register',25,5,55], # ['An instrumental song with a caribbean feel, happy mood, and featuring steel pan music, programmed percussion, and bass',25,5,55], # ['This musical piece features a playful and emotionally melodic male vocal accompanied by piano',25,5,55], # ['A eerie yet calming experimental electronic track featuring haunting synthesizer strings and pads',25,5,55], # ['A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques',25,5,55]], # inputs = [prompt, ddim_steps, scale, seed], # outputs = [outaudio], # ) # cache_examples="lazy", # Turn on to cache. # with gr.Column(): # pass demo.launch()