File size: 6,772 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

# vits_libritts_1w Recipe

In this recipe, we will show how to train [vits_libritts_1w](https://arxiv.org/abs/2106.06103) using Amphion's infrastructure. vits_libritts_1w is an end-to-end TTS architecture that utilizes conditional variational autoencoder with adversarial learning.

There are four stages in total:

1. Data preparation
2. Features extraction
3. Training
4. Inference

> **NOTE:** You need to run every command of this recipe in the `Amphion` root path:
> ```bash
> cd Amphion
> ```

## 1. Data Preparation

### Dataset Download
You can use the commonly used TTS dataset to train TTS model, e.g., LJSpeech, VCTK, LibriTTS, etc. We strongly recommend you use LJSpeech to train TTS model for the first time. How to download dataset is detailed [here](../../datasets/README.md).

### Configuration

After downloading the dataset, you can set the dataset paths in  `exp_config.json`. Note that you can change the `dataset` list to use your preferred datasets.

```json
    "dataset": [
        "LJSpeech",
    ],
    "dataset_path": {
        // TODO: Fill in your dataset path
        "LJSpeech": "[LJSpeech dataset path]",
    },
```

## 2. Features Extraction

### Configuration

Specify the `processed_dir` and the `log_dir` and for saving the processed data and the checkpoints in `exp_config.json`:

```json
    // TODO: Fill in the output log path. The default value is "Amphion/ckpts/tts"
    "log_dir": "ckpts/tts",
    "preprocess": {
        // TODO: Fill in the output data path. The default value is "Amphion/data"
        "processed_dir": "data",
        ...
    },
```

### Run

Run the `run.sh` as the preproces stage (set  `--stage 1`):

```bash
sh egs/tts/vits_libritts_1w/run.sh --stage 1
```

> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`.

## 3. Training

### Configuration

We provide the default hyparameters in the `exp_config.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on your GPU machines.

```
"train": {
        "batch_size": 16,
    }
```

### Run

Run the `run.sh` as the training stage (set  `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/tts/[YourExptName]`.

```bash
sh egs/tts/vits_libritts_1w/run.sh --stage 2 --name [YourExptName]
```

> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`.


## 4. Inference

### Configuration

For inference, you need to specify the following configurations when running `run.sh`:


| Parameters            | Description                                                                            | Example                                                                                                                                                                         |
| --------------------- | -------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `--infer_expt_dir`    | The experimental directory which contains `checkpoint`                                 | `Amphion/ckpts/tts/[YourExptName]`                                                                                                                                              |
| `--infer_output_dir`  | The output directory to save inferred audios.                                          | `Amphion/ckpts/tts/[YourExptName]/result`                                                                                                                                       |
| `--infer_mode`        | The inference mode, e.g., "`single`", "`batch`".                                       | "`single`" to generate a clip of speech, "`batch`" to generate a batch of speech at a time.                                                                                     |
| `--infer_dataset`     | The dataset used for inference.                                                        | For LJSpeech dataset, the inference dataset would be `LJSpeech`.                                                                                                                |
| `--infer_testing_set` | The subset of the inference dataset used for inference, e.g., train, test, golden_test | For LJSpeech dataset, the testing set would be  "`test`" split from LJSpeech at the feature extraction, or "`golden_test`" cherry-picked from test set as template testing set. |
| `--infer_text`        | The text to be synthesized.                                                            | "`This is a clip of generated speech with the given text from a TTS model.`"                                                                                                    |

### Run
For example, if you want to generate speech of all testing set split from LJSpeech, just run:

```bash
sh egs/tts/vits_libritts_1w/run.sh --stage 3 --gpu "0" \
	--infer_expt_dir /mnt/workspace/wangmingxuan/vits_on_libritts_hifitts/logs/LibriTTS_1w \
	--infer_output_dir /mnt/workspace/wangmingxuan/vits_on_libritts_hifitts/logs/LibriTTS_1w/result \
	--infer_mode "batch" \
    --infer_dataset "LJSpeech" \
    --infer_testing_set "test"
```

Or, if you want to generate a single clip of speech from a given text, just run:

```bash
sh egs/tts/vits_libritts_1w/run.sh --stage 3 --gpu "0" \
	--infer_expt_dir /mnt/workspace/wangmingxuan/vits_on_libritts_hifitts/logs/LibriTTS_1w \
	--infer_output_dir /mnt/workspace/wangmingxuan/vits_on_libritts_hifitts/logs/LibriTTS_1w/result \
	--infer_mode "single" \
    --infer_text "This is a clip of generated speech with the given text from a TTS model."


sh egs/tts/vits_libritts_1w/run.sh --stage 3 --gpu "0" --infer_expt_dir /mnt/workspace/wangmingxuan/vits_on_libritts_hifitts/logs/LibriTTS_1w --infer_output_dir /mnt/workspace/wangmingxuan/vits_on_libritts_hifitts/logs/LibriTTS_1w/result --infer_mode "single" --infer_text "This is a clip of generated speech with the given text from a TTS model."
```

We will release a pre-trained vits_libritts_1w model trained on LJSpeech. So you can download the pre-trained model and generate speech following the above inference instruction.


```bibtex
@inproceedings{kim2021conditional,
  title={Conditional variational autoencoder with adversarial learning for end-to-end text-to-speech},
  author={Kim, Jaehyeon and Kong, Jungil and Son, Juhee},
  booktitle={International Conference on Machine Learning},
  pages={5530--5540},
  year={2021},
}
```