File size: 4,145 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import scipy.signal as sig
import copy
import librosa


def bandpower(ps, mode="time"):
    """
    estimate bandpower, see https://de.mathworks.com/help/signal/ref/bandpower.html
    """
    if mode == "time":
        x = ps
        l2norm = np.linalg.norm(x) ** 2.0 / len(x)
        return l2norm
    elif mode == "psd":
        return sum(ps)


def getIndizesAroundPeak(arr, peakIndex, searchWidth=1000):
    peakBins = []
    magMax = arr[peakIndex]
    curVal = magMax
    for i in range(searchWidth):
        newBin = peakIndex + i
        if newBin >= len(arr):
            break
        newVal = arr[newBin]
        if newVal > curVal:
            break
        else:
            peakBins.append(int(newBin))
            curVal = newVal
    curVal = magMax
    for i in range(searchWidth):
        newBin = peakIndex - i
        if newBin < 0:
            break
        newVal = arr[newBin]
        if newVal > curVal:
            break
        else:
            peakBins.append(int(newBin))
            curVal = newVal
    return np.array(list(set(peakBins)))


def freqToBin(fAxis, Freq):
    return np.argmin(abs(fAxis - Freq))


def getPeakInArea(psd, faxis, estimation, searchWidthHz=10):
    """
    returns bin and frequency of the maximum in an area
    """
    binLow = freqToBin(faxis, estimation - searchWidthHz)
    binHi = freqToBin(faxis, estimation + searchWidthHz)
    peakbin = binLow + np.argmax(psd[binLow : binHi + 1])
    return peakbin, faxis[peakbin]


def getHarmonics(fund, sr, nHarmonics=6, aliased=False):
    harmonicMultipliers = np.arange(2, nHarmonics + 2)
    harmonicFs = fund * harmonicMultipliers
    if not aliased:
        harmonicFs[harmonicFs > sr / 2] = -1
        harmonicFs = np.delete(harmonicFs, harmonicFs == -1)
    else:
        nyqZone = np.floor(harmonicFs / (sr / 2))
        oddEvenNyq = nyqZone % 2
        harmonicFs = np.mod(harmonicFs, sr / 2)
        harmonicFs[oddEvenNyq == 1] = (sr / 2) - harmonicFs[oddEvenNyq == 1]
    return harmonicFs


def extract_snr(audio, sr=None):
    """Extract Signal-to-Noise Ratio for a given audio."""
    if sr != None:
        audio, _ = librosa.load(audio, sr=sr)
    else:
        audio, sr = librosa.load(audio, sr=sr)
    faxis, ps = sig.periodogram(
        audio, fs=sr, window=("kaiser", 38)
    )  # get periodogram, parametrized like in matlab
    fundBin = np.argmax(
        ps
    )  # estimate fundamental at maximum amplitude, get the bin number
    fundIndizes = getIndizesAroundPeak(
        ps, fundBin
    )  # get bin numbers around fundamental peak
    fundFrequency = faxis[fundBin]  # frequency of fundamental

    nHarmonics = 18
    harmonicFs = getHarmonics(
        fundFrequency, sr, nHarmonics=nHarmonics, aliased=True
    )  # get harmonic frequencies

    harmonicBorders = np.zeros([2, nHarmonics], dtype=np.int16).T
    fullHarmonicBins = np.array([], dtype=np.int16)
    fullHarmonicBinList = []
    harmPeakFreqs = []
    harmPeaks = []
    for i, harmonic in enumerate(harmonicFs):
        searcharea = 0.1 * fundFrequency
        estimation = harmonic

        binNum, freq = getPeakInArea(ps, faxis, estimation, searcharea)
        harmPeakFreqs.append(freq)
        harmPeaks.append(ps[binNum])
        allBins = getIndizesAroundPeak(ps, binNum, searchWidth=1000)
        fullHarmonicBins = np.append(fullHarmonicBins, allBins)
        fullHarmonicBinList.append(allBins)
        harmonicBorders[i, :] = [allBins[0], allBins[-1]]

    fundIndizes.sort()
    pFund = bandpower(ps[fundIndizes[0] : fundIndizes[-1]])  # get power of fundamental

    noisePrepared = copy.copy(ps)
    noisePrepared[fundIndizes] = 0
    noisePrepared[fullHarmonicBins] = 0
    noiseMean = np.median(noisePrepared[noisePrepared != 0])
    noisePrepared[fundIndizes] = noiseMean
    noisePrepared[fullHarmonicBins] = noiseMean

    noisePower = bandpower(noisePrepared)

    r = 10 * np.log10(pFund / noisePower)

    return r, 10 * np.log10(noisePower)