File size: 5,118 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
from tqdm import tqdm
from models.tts.base import TTSTrainer
from models.tts.fastspeech2.fs2 import FastSpeech2, FastSpeech2Loss
from models.tts.fastspeech2.fs2_dataset import FS2Dataset, FS2Collator
from optimizer.optimizers import NoamLR


class FastSpeech2Trainer(TTSTrainer):
    def __init__(self, args, cfg):
        TTSTrainer.__init__(self, args, cfg)
        self.cfg = cfg

    def _build_dataset(self):
        return FS2Dataset, FS2Collator

    def __build_scheduler(self):
        return NoamLR(self.optimizer, **self.cfg.train.lr_scheduler)

    def _write_summary(self, losses, stats):
        for key, value in losses.items():
            self.sw.add_scalar("train/" + key, value, self.step)
        lr = self.optimizer.state_dict()["param_groups"][0]["lr"]
        self.sw.add_scalar("learning_rate", lr, self.step)

    def _write_valid_summary(self, losses, stats):
        for key, value in losses.items():
            self.sw.add_scalar("val/" + key, value, self.step)

    def _build_criterion(self):
        return FastSpeech2Loss(self.cfg)

    def get_state_dict(self):
        state_dict = {
            "model": self.model.state_dict(),
            "optimizer": self.optimizer.state_dict(),
            "scheduler": self.scheduler.state_dict(),
            "step": self.step,
            "epoch": self.epoch,
            "batch_size": self.cfg.train.batch_size,
        }
        return state_dict

    def _build_optimizer(self):
        optimizer = torch.optim.Adam(self.model.parameters(), **self.cfg.train.adam)
        return optimizer

    def _build_scheduler(self):
        scheduler = NoamLR(self.optimizer, **self.cfg.train.lr_scheduler)
        return scheduler

    def _build_model(self):
        self.model = FastSpeech2(self.cfg)
        return self.model

    def _train_epoch(self):
        r"""Training epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        self.model.train()
        epoch_sum_loss: float = 0.0
        epoch_step: int = 0
        epoch_losses: dict = {}
        for batch in tqdm(
            self.train_dataloader,
            desc=f"Training Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):
            # Do training step and BP
            with self.accelerator.accumulate(self.model):
                loss, train_losses = self._train_step(batch)
                self.accelerator.backward(loss)
                grad_clip_thresh = self.cfg.train.grad_clip_thresh
                nn.utils.clip_grad_norm_(self.model.parameters(), grad_clip_thresh)
                self.optimizer.step()
                self.scheduler.step()
                self.optimizer.zero_grad()
            self.batch_count += 1

            # Update info for each step
            if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
                epoch_sum_loss += loss
                for key, value in train_losses.items():
                    if key not in epoch_losses.keys():
                        epoch_losses[key] = value
                    else:
                        epoch_losses[key] += value

                self.accelerator.log(
                    {
                        "Step/Train Loss": loss,
                        "Step/Learning Rate": self.optimizer.param_groups[0]["lr"],
                    },
                    step=self.step,
                )
                self.step += 1
                epoch_step += 1

        self.accelerator.wait_for_everyone()

        epoch_sum_loss = (
            epoch_sum_loss
            / len(self.train_dataloader)
            * self.cfg.train.gradient_accumulation_step
        )

        for key in epoch_losses.keys():
            epoch_losses[key] = (
                epoch_losses[key]
                / len(self.train_dataloader)
                * self.cfg.train.gradient_accumulation_step
            )
        return epoch_sum_loss, epoch_losses

    def _train_step(self, data):
        train_losses = {}
        total_loss = 0
        train_stats = {}

        preds = self.model(data)

        train_losses = self.criterion(data, preds)

        total_loss = train_losses["loss"]
        for key, value in train_losses.items():
            train_losses[key] = value.item()

        return total_loss, train_losses

    @torch.no_grad()
    def _valid_step(self, data):
        valid_loss = {}
        total_valid_loss = 0
        valid_stats = {}

        preds = self.model(data)

        valid_losses = self.criterion(data, preds)

        total_valid_loss = valid_losses["loss"]
        for key, value in valid_losses.items():
            valid_losses[key] = value.item()

        return total_valid_loss, valid_losses, valid_stats