Spaces:
Running
Running
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
"""Encoder definition.""" | |
from typing import Tuple | |
import torch | |
from modules.wenet_extractor.transformer.attention import MultiHeadedAttention | |
from modules.wenet_extractor.transformer.attention import ( | |
RelPositionMultiHeadedAttention, | |
) | |
from modules.wenet_extractor.transformer.convolution import ConvolutionModule | |
from modules.wenet_extractor.transformer.embedding import PositionalEncoding | |
from modules.wenet_extractor.transformer.embedding import RelPositionalEncoding | |
from modules.wenet_extractor.transformer.embedding import NoPositionalEncoding | |
from modules.wenet_extractor.transformer.encoder_layer import TransformerEncoderLayer | |
from modules.wenet_extractor.transformer.encoder_layer import ConformerEncoderLayer | |
from modules.wenet_extractor.transformer.positionwise_feed_forward import ( | |
PositionwiseFeedForward, | |
) | |
from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling4 | |
from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling6 | |
from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling8 | |
from modules.wenet_extractor.transformer.subsampling import LinearNoSubsampling | |
from modules.wenet_extractor.utils.common import get_activation | |
from modules.wenet_extractor.utils.mask import make_pad_mask | |
from modules.wenet_extractor.utils.mask import add_optional_chunk_mask | |
class BaseEncoder(torch.nn.Module): | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int = 256, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
attention_dropout_rate: float = 0.0, | |
input_layer: str = "conv2d", | |
pos_enc_layer_type: str = "abs_pos", | |
normalize_before: bool = True, | |
static_chunk_size: int = 0, | |
use_dynamic_chunk: bool = False, | |
global_cmvn: torch.nn.Module = None, | |
use_dynamic_left_chunk: bool = False, | |
): | |
""" | |
Args: | |
input_size (int): input dim | |
output_size (int): dimension of attention | |
attention_heads (int): the number of heads of multi head attention | |
linear_units (int): the hidden units number of position-wise feed | |
forward | |
num_blocks (int): the number of decoder blocks | |
dropout_rate (float): dropout rate | |
attention_dropout_rate (float): dropout rate in attention | |
positional_dropout_rate (float): dropout rate after adding | |
positional encoding | |
input_layer (str): input layer type. | |
optional [linear, conv2d, conv2d6, conv2d8] | |
pos_enc_layer_type (str): Encoder positional encoding layer type. | |
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos] | |
normalize_before (bool): | |
True: use layer_norm before each sub-block of a layer. | |
False: use layer_norm after each sub-block of a layer. | |
static_chunk_size (int): chunk size for static chunk training and | |
decoding | |
use_dynamic_chunk (bool): whether use dynamic chunk size for | |
training or not, You can only use fixed chunk(chunk_size > 0) | |
or dyanmic chunk size(use_dynamic_chunk = True) | |
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module | |
use_dynamic_left_chunk (bool): whether use dynamic left chunk in | |
dynamic chunk training | |
""" | |
super().__init__() | |
self._output_size = output_size | |
if pos_enc_layer_type == "abs_pos": | |
pos_enc_class = PositionalEncoding | |
elif pos_enc_layer_type == "rel_pos": | |
pos_enc_class = RelPositionalEncoding | |
elif pos_enc_layer_type == "no_pos": | |
pos_enc_class = NoPositionalEncoding | |
else: | |
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type) | |
if input_layer == "linear": | |
subsampling_class = LinearNoSubsampling | |
elif input_layer == "conv2d": | |
subsampling_class = Conv2dSubsampling4 | |
elif input_layer == "conv2d6": | |
subsampling_class = Conv2dSubsampling6 | |
elif input_layer == "conv2d8": | |
subsampling_class = Conv2dSubsampling8 | |
else: | |
raise ValueError("unknown input_layer: " + input_layer) | |
self.global_cmvn = global_cmvn | |
self.embed = subsampling_class( | |
input_size, | |
output_size, | |
dropout_rate, | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
self.normalize_before = normalize_before | |
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) | |
self.static_chunk_size = static_chunk_size | |
self.use_dynamic_chunk = use_dynamic_chunk | |
self.use_dynamic_left_chunk = use_dynamic_left_chunk | |
def output_size(self) -> int: | |
return self._output_size | |
def forward( | |
self, | |
xs: torch.Tensor, | |
xs_lens: torch.Tensor, | |
decoding_chunk_size: int = 0, | |
num_decoding_left_chunks: int = -1, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Embed positions in tensor. | |
Args: | |
xs: padded input tensor (B, T, D) | |
xs_lens: input length (B) | |
decoding_chunk_size: decoding chunk size for dynamic chunk | |
0: default for training, use random dynamic chunk. | |
<0: for decoding, use full chunk. | |
>0: for decoding, use fixed chunk size as set. | |
num_decoding_left_chunks: number of left chunks, this is for decoding, | |
the chunk size is decoding_chunk_size. | |
>=0: use num_decoding_left_chunks | |
<0: use all left chunks | |
Returns: | |
encoder output tensor xs, and subsampled masks | |
xs: padded output tensor (B, T' ~= T/subsample_rate, D) | |
masks: torch.Tensor batch padding mask after subsample | |
(B, 1, T' ~= T/subsample_rate) | |
""" | |
T = xs.size(1) | |
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) | |
if self.global_cmvn is not None: | |
xs = self.global_cmvn(xs) | |
xs, pos_emb, masks = self.embed(xs, masks) | |
mask_pad = masks # (B, 1, T/subsample_rate) | |
chunk_masks = add_optional_chunk_mask( | |
xs, | |
masks, | |
self.use_dynamic_chunk, | |
self.use_dynamic_left_chunk, | |
decoding_chunk_size, | |
self.static_chunk_size, | |
num_decoding_left_chunks, | |
) | |
for layer in self.encoders: | |
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) | |
if self.normalize_before: | |
xs = self.after_norm(xs) | |
# Here we assume the mask is not changed in encoder layers, so just | |
# return the masks before encoder layers, and the masks will be used | |
# for cross attention with decoder later | |
return xs, masks | |
def forward_chunk( | |
self, | |
xs: torch.Tensor, | |
offset: int, | |
required_cache_size: int, | |
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0), | |
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0), | |
att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" Forward just one chunk | |
Args: | |
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim), | |
where `time == (chunk_size - 1) * subsample_rate + \ | |
subsample.right_context + 1` | |
offset (int): current offset in encoder output time stamp | |
required_cache_size (int): cache size required for next chunk | |
compuation | |
>=0: actual cache size | |
<0: means all history cache is required | |
att_cache (torch.Tensor): cache tensor for KEY & VALUE in | |
transformer/conformer attention, with shape | |
(elayers, head, cache_t1, d_k * 2), where | |
`head * d_k == hidden-dim` and | |
`cache_t1 == chunk_size * num_decoding_left_chunks`. | |
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer, | |
(elayers, b=1, hidden-dim, cache_t2), where | |
`cache_t2 == cnn.lorder - 1` | |
Returns: | |
torch.Tensor: output of current input xs, | |
with shape (b=1, chunk_size, hidden-dim). | |
torch.Tensor: new attention cache required for next chunk, with | |
dynamic shape (elayers, head, ?, d_k * 2) | |
depending on required_cache_size. | |
torch.Tensor: new conformer cnn cache required for next chunk, with | |
same shape as the original cnn_cache. | |
""" | |
assert xs.size(0) == 1 | |
# tmp_masks is just for interface compatibility | |
tmp_masks = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool) | |
tmp_masks = tmp_masks.unsqueeze(1) | |
if self.global_cmvn is not None: | |
xs = self.global_cmvn(xs) | |
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim) | |
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset) | |
# NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim) | |
elayers, cache_t1 = att_cache.size(0), att_cache.size(2) | |
chunk_size = xs.size(1) | |
attention_key_size = cache_t1 + chunk_size | |
pos_emb = self.embed.position_encoding( | |
offset=offset - cache_t1, size=attention_key_size | |
) | |
if required_cache_size < 0: | |
next_cache_start = 0 | |
elif required_cache_size == 0: | |
next_cache_start = attention_key_size | |
else: | |
next_cache_start = max(attention_key_size - required_cache_size, 0) | |
r_att_cache = [] | |
r_cnn_cache = [] | |
for i, layer in enumerate(self.encoders): | |
# NOTE(xcsong): Before layer.forward | |
# shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2), | |
# shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2) | |
xs, _, new_att_cache, new_cnn_cache = layer( | |
xs, | |
att_mask, | |
pos_emb, | |
att_cache=att_cache[i : i + 1] if elayers > 0 else att_cache, | |
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache, | |
) | |
# NOTE(xcsong): After layer.forward | |
# shape(new_att_cache) is (1, head, attention_key_size, d_k * 2), | |
# shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2) | |
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :]) | |
r_cnn_cache.append(new_cnn_cache.unsqueeze(0)) | |
if self.normalize_before: | |
xs = self.after_norm(xs) | |
# NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2), | |
# ? may be larger than cache_t1, it depends on required_cache_size | |
r_att_cache = torch.cat(r_att_cache, dim=0) | |
# NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2) | |
r_cnn_cache = torch.cat(r_cnn_cache, dim=0) | |
return (xs, r_att_cache, r_cnn_cache) | |
def forward_chunk_by_chunk( | |
self, | |
xs: torch.Tensor, | |
decoding_chunk_size: int, | |
num_decoding_left_chunks: int = -1, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Forward input chunk by chunk with chunk_size like a streaming | |
fashion | |
Here we should pay special attention to computation cache in the | |
streaming style forward chunk by chunk. Three things should be taken | |
into account for computation in the current network: | |
1. transformer/conformer encoder layers output cache | |
2. convolution in conformer | |
3. convolution in subsampling | |
However, we don't implement subsampling cache for: | |
1. We can control subsampling module to output the right result by | |
overlapping input instead of cache left context, even though it | |
wastes some computation, but subsampling only takes a very | |
small fraction of computation in the whole model. | |
2. Typically, there are several covolution layers with subsampling | |
in subsampling module, it is tricky and complicated to do cache | |
with different convolution layers with different subsampling | |
rate. | |
3. Currently, nn.Sequential is used to stack all the convolution | |
layers in subsampling, we need to rewrite it to make it work | |
with cache, which is not prefered. | |
Args: | |
xs (torch.Tensor): (1, max_len, dim) | |
chunk_size (int): decoding chunk size | |
""" | |
assert decoding_chunk_size > 0 | |
# The model is trained by static or dynamic chunk | |
assert self.static_chunk_size > 0 or self.use_dynamic_chunk | |
subsampling = self.embed.subsampling_rate | |
context = self.embed.right_context + 1 # Add current frame | |
stride = subsampling * decoding_chunk_size | |
decoding_window = (decoding_chunk_size - 1) * subsampling + context | |
num_frames = xs.size(1) | |
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device) | |
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device) | |
outputs = [] | |
offset = 0 | |
required_cache_size = decoding_chunk_size * num_decoding_left_chunks | |
# Feed forward overlap input step by step | |
for cur in range(0, num_frames - context + 1, stride): | |
end = min(cur + decoding_window, num_frames) | |
chunk_xs = xs[:, cur:end, :] | |
(y, att_cache, cnn_cache) = self.forward_chunk( | |
chunk_xs, offset, required_cache_size, att_cache, cnn_cache | |
) | |
outputs.append(y) | |
offset += y.size(1) | |
ys = torch.cat(outputs, 1) | |
masks = torch.ones((1, 1, ys.size(1)), device=ys.device, dtype=torch.bool) | |
return ys, masks | |
class TransformerEncoder(BaseEncoder): | |
"""Transformer encoder module.""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int = 256, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
attention_dropout_rate: float = 0.0, | |
input_layer: str = "conv2d", | |
pos_enc_layer_type: str = "abs_pos", | |
normalize_before: bool = True, | |
static_chunk_size: int = 0, | |
use_dynamic_chunk: bool = False, | |
global_cmvn: torch.nn.Module = None, | |
use_dynamic_left_chunk: bool = False, | |
): | |
"""Construct TransformerEncoder | |
See Encoder for the meaning of each parameter. | |
""" | |
super().__init__( | |
input_size, | |
output_size, | |
attention_heads, | |
linear_units, | |
num_blocks, | |
dropout_rate, | |
positional_dropout_rate, | |
attention_dropout_rate, | |
input_layer, | |
pos_enc_layer_type, | |
normalize_before, | |
static_chunk_size, | |
use_dynamic_chunk, | |
global_cmvn, | |
use_dynamic_left_chunk, | |
) | |
self.encoders = torch.nn.ModuleList( | |
[ | |
TransformerEncoderLayer( | |
output_size, | |
MultiHeadedAttention( | |
attention_heads, output_size, attention_dropout_rate | |
), | |
PositionwiseFeedForward(output_size, linear_units, dropout_rate), | |
dropout_rate, | |
normalize_before, | |
) | |
for _ in range(num_blocks) | |
] | |
) | |
class ConformerEncoder(BaseEncoder): | |
"""Conformer encoder module.""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int = 256, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
attention_dropout_rate: float = 0.0, | |
input_layer: str = "conv2d", | |
pos_enc_layer_type: str = "rel_pos", | |
normalize_before: bool = True, | |
static_chunk_size: int = 0, | |
use_dynamic_chunk: bool = False, | |
global_cmvn: torch.nn.Module = None, | |
use_dynamic_left_chunk: bool = False, | |
positionwise_conv_kernel_size: int = 1, | |
macaron_style: bool = True, | |
selfattention_layer_type: str = "rel_selfattn", | |
activation_type: str = "swish", | |
use_cnn_module: bool = True, | |
cnn_module_kernel: int = 15, | |
causal: bool = False, | |
cnn_module_norm: str = "batch_norm", | |
): | |
"""Construct ConformerEncoder | |
Args: | |
input_size to use_dynamic_chunk, see in BaseEncoder | |
positionwise_conv_kernel_size (int): Kernel size of positionwise | |
conv1d layer. | |
macaron_style (bool): Whether to use macaron style for | |
positionwise layer. | |
selfattention_layer_type (str): Encoder attention layer type, | |
the parameter has no effect now, it's just for configure | |
compatibility. | |
activation_type (str): Encoder activation function type. | |
use_cnn_module (bool): Whether to use convolution module. | |
cnn_module_kernel (int): Kernel size of convolution module. | |
causal (bool): whether to use causal convolution or not. | |
""" | |
super().__init__( | |
input_size, | |
output_size, | |
attention_heads, | |
linear_units, | |
num_blocks, | |
dropout_rate, | |
positional_dropout_rate, | |
attention_dropout_rate, | |
input_layer, | |
pos_enc_layer_type, | |
normalize_before, | |
static_chunk_size, | |
use_dynamic_chunk, | |
global_cmvn, | |
use_dynamic_left_chunk, | |
) | |
activation = get_activation(activation_type) | |
# self-attention module definition | |
if pos_enc_layer_type != "rel_pos": | |
encoder_selfattn_layer = MultiHeadedAttention | |
else: | |
encoder_selfattn_layer = RelPositionMultiHeadedAttention | |
encoder_selfattn_layer_args = ( | |
attention_heads, | |
output_size, | |
attention_dropout_rate, | |
) | |
# feed-forward module definition | |
positionwise_layer = PositionwiseFeedForward | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
dropout_rate, | |
activation, | |
) | |
# convolution module definition | |
convolution_layer = ConvolutionModule | |
convolution_layer_args = ( | |
output_size, | |
cnn_module_kernel, | |
activation, | |
cnn_module_norm, | |
causal, | |
) | |
self.encoders = torch.nn.ModuleList( | |
[ | |
ConformerEncoderLayer( | |
output_size, | |
encoder_selfattn_layer(*encoder_selfattn_layer_args), | |
positionwise_layer(*positionwise_layer_args), | |
positionwise_layer(*positionwise_layer_args) | |
if macaron_style | |
else None, | |
convolution_layer(*convolution_layer_args) | |
if use_cnn_module | |
else None, | |
dropout_rate, | |
normalize_before, | |
) | |
for _ in range(num_blocks) | |
] | |
) | |