Spaces:
Running
on
A10G
Running
on
A10G
File size: 20,170 Bytes
0883aa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
import logging
import json
import random
import re
import tarfile
from subprocess import PIPE, Popen
from urllib.parse import urlparse
import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi
from torch.nn.utils.rnn import pad_sequence
AUDIO_FORMAT_SETS = set(["flac", "mp3", "m4a", "ogg", "opus", "wav", "wma"])
def url_opener(data):
"""Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert "src" in sample
# TODO(Binbin Zhang): support HTTP
url = sample["src"]
try:
pr = urlparse(url)
# local file
if pr.scheme == "" or pr.scheme == "file":
stream = open(url, "rb")
# network file, such as HTTP(HDFS/OSS/S3)/HTTPS/SCP
else:
cmd = f"wget -q -O - {url}"
process = Popen(cmd, shell=True, stdout=PIPE)
sample.update(process=process)
stream = process.stdout
sample.update(stream=stream)
yield sample
except Exception as ex:
logging.warning("Failed to open {}".format(url))
def tar_file_and_group(data):
"""Expand a stream of open tar files into a stream of tar file contents.
And groups the file with same prefix
Args:
data: Iterable[{src, stream}]
Returns:
Iterable[{key, wav, txt, sample_rate}]
"""
for sample in data:
assert "stream" in sample
stream = tarfile.open(fileobj=sample["stream"], mode="r|*")
prev_prefix = None
example = {}
valid = True
for tarinfo in stream:
name = tarinfo.name
pos = name.rfind(".")
assert pos > 0
prefix, postfix = name[:pos], name[pos + 1 :]
if prev_prefix is not None and prefix != prev_prefix:
example["key"] = prev_prefix
if valid:
yield example
example = {}
valid = True
with stream.extractfile(tarinfo) as file_obj:
try:
if postfix == "txt":
example["txt"] = file_obj.read().decode("utf8").strip()
elif postfix in AUDIO_FORMAT_SETS:
waveform, sample_rate = torchaudio.load(file_obj)
example["wav"] = waveform
example["sample_rate"] = sample_rate
else:
example[postfix] = file_obj.read()
except Exception as ex:
valid = False
logging.warning("error to parse {}".format(name))
prev_prefix = prefix
if prev_prefix is not None:
example["key"] = prev_prefix
yield example
stream.close()
if "process" in sample:
sample["process"].communicate()
sample["stream"].close()
def parse_raw(data):
"""Parse key/wav/txt from json line
Args:
data: Iterable[str], str is a json line has key/wav/txt
Returns:
Iterable[{key, wav, txt, sample_rate}]
"""
for sample in data:
assert "src" in sample
json_line = sample["src"]
obj = json.loads(json_line)
assert "key" in obj
assert "wav" in obj
assert "txt" in obj
key = obj["key"]
wav_file = obj["wav"]
txt = obj["txt"]
try:
if "start" in obj:
assert "end" in obj
sample_rate = torchaudio.backend.sox_io_backend.info(
wav_file
).sample_rate
start_frame = int(obj["start"] * sample_rate)
end_frame = int(obj["end"] * sample_rate)
waveform, _ = torchaudio.backend.sox_io_backend.load(
filepath=wav_file,
num_frames=end_frame - start_frame,
frame_offset=start_frame,
)
else:
waveform, sample_rate = torchaudio.load(wav_file)
example = dict(key=key, txt=txt, wav=waveform, sample_rate=sample_rate)
yield example
except Exception as ex:
logging.warning("Failed to read {}".format(wav_file))
def filter(
data,
max_length=10240,
min_length=10,
token_max_length=200,
token_min_length=1,
min_output_input_ratio=0.0005,
max_output_input_ratio=1,
):
"""Filter sample according to feature and label length
Inplace operation.
Args::
data: Iterable[{key, wav, label, sample_rate}]
max_length: drop utterance which is greater than max_length(10ms)
min_length: drop utterance which is less than min_length(10ms)
token_max_length: drop utterance which is greater than
token_max_length, especially when use char unit for
english modeling
token_min_length: drop utterance which is
less than token_max_length
min_output_input_ratio: minimal ration of
token_length / feats_length(10ms)
max_output_input_ratio: maximum ration of
token_length / feats_length(10ms)
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
assert "sample_rate" in sample
assert "wav" in sample
assert "label" in sample
# sample['wav'] is torch.Tensor, we have 100 frames every second
num_frames = sample["wav"].size(1) / sample["sample_rate"] * 100
if num_frames < min_length:
continue
if num_frames > max_length:
continue
if len(sample["label"]) < token_min_length:
continue
if len(sample["label"]) > token_max_length:
continue
if num_frames != 0:
if len(sample["label"]) / num_frames < min_output_input_ratio:
continue
if len(sample["label"]) / num_frames > max_output_input_ratio:
continue
yield sample
def resample(data, resample_rate=16000):
"""Resample data.
Inplace operation.
Args:
data: Iterable[{key, wav, label, sample_rate}]
resample_rate: target resample rate
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
print("resample...")
for sample in data:
assert "sample_rate" in sample
assert "wav" in sample
sample_rate = sample["sample_rate"]
print("sample_rate: ", sample_rate)
print("resample_rate: ", resample_rate)
waveform = sample["wav"]
if sample_rate != resample_rate:
sample["sample_rate"] = resample_rate
sample["wav"] = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=resample_rate
)(waveform)
yield sample
def speed_perturb(data, speeds=None):
"""Apply speed perturb to the data.
Inplace operation.
Args:
data: Iterable[{key, wav, label, sample_rate}]
speeds(List[float]): optional speed
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
if speeds is None:
speeds = [0.9, 1.0, 1.1]
for sample in data:
assert "sample_rate" in sample
assert "wav" in sample
sample_rate = sample["sample_rate"]
waveform = sample["wav"]
speed = random.choice(speeds)
if speed != 1.0:
wav, _ = torchaudio.sox_effects.apply_effects_tensor(
waveform,
sample_rate,
[["speed", str(speed)], ["rate", str(sample_rate)]],
)
sample["wav"] = wav
yield sample
def compute_fbank(data, num_mel_bins=23, frame_length=25, frame_shift=10, dither=0.0):
"""Extract fbank
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
assert "sample_rate" in sample
assert "wav" in sample
assert "key" in sample
assert "label" in sample
sample_rate = sample["sample_rate"]
waveform = sample["wav"]
waveform = waveform * (1 << 15)
# Only keep key, feat, label
mat = kaldi.fbank(
waveform,
num_mel_bins=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither,
energy_floor=0.0,
sample_frequency=sample_rate,
)
yield dict(key=sample["key"], label=sample["label"], feat=mat)
def compute_mfcc(
data,
num_mel_bins=23,
frame_length=25,
frame_shift=10,
dither=0.0,
num_ceps=40,
high_freq=0.0,
low_freq=20.0,
):
"""Extract mfcc
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
assert "sample_rate" in sample
assert "wav" in sample
assert "key" in sample
assert "label" in sample
sample_rate = sample["sample_rate"]
waveform = sample["wav"]
waveform = waveform * (1 << 15)
# Only keep key, feat, label
mat = kaldi.mfcc(
waveform,
num_mel_bins=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither,
num_ceps=num_ceps,
high_freq=high_freq,
low_freq=low_freq,
sample_frequency=sample_rate,
)
yield dict(key=sample["key"], label=sample["label"], feat=mat)
def __tokenize_by_bpe_model(sp, txt):
tokens = []
# CJK(China Japan Korea) unicode range is [U+4E00, U+9FFF], ref:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
pattern = re.compile(r"([\u4e00-\u9fff])")
# Example:
# txt = "你好 ITS'S OKAY 的"
# chars = ["你", "好", " ITS'S OKAY ", "的"]
chars = pattern.split(txt.upper())
mix_chars = [w for w in chars if len(w.strip()) > 0]
for ch_or_w in mix_chars:
# ch_or_w is a single CJK charater(i.e., "你"), do nothing.
if pattern.fullmatch(ch_or_w) is not None:
tokens.append(ch_or_w)
# ch_or_w contains non-CJK charaters(i.e., " IT'S OKAY "),
# encode ch_or_w using bpe_model.
else:
for p in sp.encode_as_pieces(ch_or_w):
tokens.append(p)
return tokens
def tokenize(
data, symbol_table, bpe_model=None, non_lang_syms=None, split_with_space=False
):
"""Decode text to chars or BPE
Inplace operation
Args:
data: Iterable[{key, wav, txt, sample_rate}]
Returns:
Iterable[{key, wav, txt, tokens, label, sample_rate}]
"""
if non_lang_syms is not None:
non_lang_syms_pattern = re.compile(r"(\[[^\[\]]+\]|<[^<>]+>|{[^{}]+})")
else:
non_lang_syms = {}
non_lang_syms_pattern = None
if bpe_model is not None:
import sentencepiece as spm
sp = spm.SentencePieceProcessor()
sp.load(bpe_model)
else:
sp = None
for sample in data:
assert "txt" in sample
txt = sample["txt"].strip()
if non_lang_syms_pattern is not None:
parts = non_lang_syms_pattern.split(txt.upper())
parts = [w for w in parts if len(w.strip()) > 0]
else:
parts = [txt]
label = []
tokens = []
for part in parts:
if part in non_lang_syms:
tokens.append(part)
else:
if bpe_model is not None:
tokens.extend(__tokenize_by_bpe_model(sp, part))
else:
if split_with_space:
part = part.split(" ")
for ch in part:
if ch == " ":
ch = "▁"
tokens.append(ch)
for ch in tokens:
if ch in symbol_table:
label.append(symbol_table[ch])
elif "<unk>" in symbol_table:
label.append(symbol_table["<unk>"])
sample["tokens"] = tokens
sample["label"] = label
yield sample
def spec_aug(data, num_t_mask=2, num_f_mask=2, max_t=50, max_f=10, max_w=80):
"""Do spec augmentation
Inplace operation
Args:
data: Iterable[{key, feat, label}]
num_t_mask: number of time mask to apply
num_f_mask: number of freq mask to apply
max_t: max width of time mask
max_f: max width of freq mask
max_w: max width of time warp
Returns
Iterable[{key, feat, label}]
"""
for sample in data:
assert "feat" in sample
x = sample["feat"]
assert isinstance(x, torch.Tensor)
y = x.clone().detach()
max_frames = y.size(0)
max_freq = y.size(1)
# time mask
for i in range(num_t_mask):
start = random.randint(0, max_frames - 1)
length = random.randint(1, max_t)
end = min(max_frames, start + length)
y[start:end, :] = 0
# freq mask
for i in range(num_f_mask):
start = random.randint(0, max_freq - 1)
length = random.randint(1, max_f)
end = min(max_freq, start + length)
y[:, start:end] = 0
sample["feat"] = y
yield sample
def spec_sub(data, max_t=20, num_t_sub=3):
"""Do spec substitute
Inplace operation
ref: U2++, section 3.2.3 [https://arxiv.org/abs/2106.05642]
Args:
data: Iterable[{key, feat, label}]
max_t: max width of time substitute
num_t_sub: number of time substitute to apply
Returns
Iterable[{key, feat, label}]
"""
for sample in data:
assert "feat" in sample
x = sample["feat"]
assert isinstance(x, torch.Tensor)
y = x.clone().detach()
max_frames = y.size(0)
for i in range(num_t_sub):
start = random.randint(0, max_frames - 1)
length = random.randint(1, max_t)
end = min(max_frames, start + length)
# only substitute the earlier time chosen randomly for current time
pos = random.randint(0, start)
y[start:end, :] = x[start - pos : end - pos, :]
sample["feat"] = y
yield sample
def spec_trim(data, max_t=20):
"""Trim tailing frames. Inplace operation.
ref: TrimTail [https://arxiv.org/abs/2211.00522]
Args:
data: Iterable[{key, feat, label}]
max_t: max width of length trimming
Returns
Iterable[{key, feat, label}]
"""
for sample in data:
assert "feat" in sample
x = sample["feat"]
assert isinstance(x, torch.Tensor)
max_frames = x.size(0)
length = random.randint(1, max_t)
if length < max_frames / 2:
y = x.clone().detach()[: max_frames - length]
sample["feat"] = y
yield sample
def shuffle(data, shuffle_size=10000):
"""Local shuffle the data
Args:
data: Iterable[{key, feat, label}]
shuffle_size: buffer size for shuffle
Returns:
Iterable[{key, feat, label}]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= shuffle_size:
random.shuffle(buf)
for x in buf:
yield x
buf = []
# The sample left over
random.shuffle(buf)
for x in buf:
yield x
def sort(data, sort_size=500):
"""Sort the data by feature length.
Sort is used after shuffle and before batch, so we can group
utts with similar lengths into a batch, and `sort_size` should
be less than `shuffle_size`
Args:
data: Iterable[{key, feat, label}]
sort_size: buffer size for sort
Returns:
Iterable[{key, feat, label}]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= sort_size:
buf.sort(key=lambda x: x["feat"].size(0))
for x in buf:
yield x
buf = []
# The sample left over
buf.sort(key=lambda x: x["feat"].size(0))
for x in buf:
yield x
def static_batch(data, batch_size=16):
"""Static batch the data by `batch_size`
Args:
data: Iterable[{key, feat, label}]
batch_size: batch size
Returns:
Iterable[List[{key, feat, label}]]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= batch_size:
yield buf
buf = []
if len(buf) > 0:
yield buf
def dynamic_batch(data, max_frames_in_batch=12000):
"""Dynamic batch the data until the total frames in batch
reach `max_frames_in_batch`
Args:
data: Iterable[{key, feat, label}]
max_frames_in_batch: max_frames in one batch
Returns:
Iterable[List[{key, feat, label}]]
"""
buf = []
longest_frames = 0
for sample in data:
assert "feat" in sample
assert isinstance(sample["feat"], torch.Tensor)
new_sample_frames = sample["feat"].size(0)
longest_frames = max(longest_frames, new_sample_frames)
frames_after_padding = longest_frames * (len(buf) + 1)
if frames_after_padding > max_frames_in_batch:
yield buf
buf = [sample]
longest_frames = new_sample_frames
else:
buf.append(sample)
if len(buf) > 0:
yield buf
def batch(data, batch_type="static", batch_size=16, max_frames_in_batch=12000):
"""Wrapper for static/dynamic batch"""
if batch_type == "static":
return static_batch(data, batch_size)
elif batch_type == "dynamic":
return dynamic_batch(data, max_frames_in_batch)
else:
logging.fatal("Unsupported batch type {}".format(batch_type))
def padding(data):
"""Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
"""
for sample in data:
assert isinstance(sample, list)
feats_length = torch.tensor(
[x["feat"].size(0) for x in sample], dtype=torch.int32
)
order = torch.argsort(feats_length, descending=True)
feats_lengths = torch.tensor(
[sample[i]["feat"].size(0) for i in order], dtype=torch.int32
)
sorted_feats = [sample[i]["feat"] for i in order]
sorted_keys = [sample[i]["key"] for i in order]
sorted_labels = [
torch.tensor(sample[i]["label"], dtype=torch.int64) for i in order
]
label_lengths = torch.tensor(
[x.size(0) for x in sorted_labels], dtype=torch.int32
)
padded_feats = pad_sequence(sorted_feats, batch_first=True, padding_value=0)
padding_labels = pad_sequence(sorted_labels, batch_first=True, padding_value=-1)
yield (sorted_keys, padded_feats, padding_labels, feats_lengths, label_lengths)
|